Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biophysics : When chromosomes stretch

27.04.2006
Biophysicists at the Institut Curie/CNRS, in collaboration with CNRS and University Pierre et Marie Curie physicists and biologists, have just demonstrated the remarkable elasticity of chromatin, the DNA-protein complex that makes up the chromosomes.

Observed by nanomanipulation of individual DNA molecules, this resilience facilitates the work of the enzymes that “read” the genetic material and of those that repair it if damaged. When alterations – mutations – remain in the DNA, there is a risk that defective, even tumor cells may arise. The elasticity of chromatin is therefore of crucial importance in the life of the cell.

The genetic material has clearly not yet divulged all its secrets. Hitherto, only its chemical composition and spatial organization were taken into account. The role of the physical properties of DNA, such as its mechanical response to torsion, is now beginning to be understood. These discoveries were published in the May 2006 issue of Nature Structural & Molecular Biology.

Each of our cells contains all the information needed for correct functioning of the body. This information, which directs the synthesis of all proteins, is written in the DNA in the form of a genetic code, a “book” of huge complexity containing some three thousand million letters. The spatial organization of this genetic code in the nucleus is not random: in addition to the information contained in the genetic code, there is also information implicit in the three-dimensional arrangement of the genetic material. So, the reading and expression of DNA depend on both the genetic code and how it is organized spatially. Any error in this ultrasophisticated arrangement can lead to disorganization of the genome, changes in gene expression, and cellular dysfunction.

Chromatin limbers up

The highly ordered organization of DNA (see box) is based first and foremost on histones(1). The DNA double helix wraps around these "condensing" proteins to form a bead necklace – chromatin. By varying the condensation, it is possible to modulate how accessible DNA is to proteins, thereby influencing its transcription, repair and so forth. In particular, chromatin organization is involved in the regulation of gene expression.

At the Institut Curie, the CNRS team of Jean-Louis Viovy(2), MMBM began to be interested in chromatin condensation during a collaboration with the group of Geneviève Almouzni(3), a specialist in the field. The MMBM group is now investigating in depth the mechanics of chromatin dynamics in collaboration with the biologists of Ariel Prunell’s team at the Institut Jacques Monod, Jean-Marc Victor’s group of theoreticians at the University Paris VI, and Vincent Croquette’s team at the Ecole Normale Supérieure in Paris.

By using “molecular adhesive tape”, a bead a few microns across is attached to one end of the DNA. This bead can be observed under the microscope, and so the position of the end of the DNA can be deduced. The other end of the DNA is attached to the wall of a recipient. Using magnets, a force is applied to the bead, thereby stretching the DNA molecule.

Using these “magnetic tweezers”, it is possible to hold the ends of an individual DNA fiber and apply torsion and forces comparable to those exerted by biological molecules. This experiment demonstrated that the chromatin fiber is extremely flexible in torsion and can be twisted clockwise and anticlockwise without changing its length. This plasticity, which is five times greater than that of naked DNA, can be explained by a theoretical model in which there is a state of equilibrium between three different configurations of the nucleosomes.

This great flexibility of the DNA bead necklace is vital for the cell’s functions. In particular, it enables the chromatin fiber to withstand the twisting forces exerted by the enzymes in charge of DNA transcription, without being damaged, and without the need for other proteins. Because of its flexibility, the chromatin fiber transmits the resulting structural changes as “information” on how these enzymes work.

In conclusion, the flexibility of the chromatin fiber facilitates and accelerates DNA’s reaction to changes in its environment. This flexibility plays a vital role in the regulation of gene expression and in cellular functions. Only biophysical approaches on the scale of a single DNA molecule can yield such observations, which are indispensable to a better and multifaceted understanding of DNA, its interactions and cell function.

(1) DNA wraps around small proteins called histones, which provide information in addition to the genetic code: the so-called "histone code". Histones have been highly conserved through evolution and are most abundant in the cell nucleus. Each cell contains some 60 million histones, which together constitute a mass close to that of the genetic material.
(2) “Macromolecules and Microsystems in Biology and Medicine” group in UMR 168 CNRS/Institut Curie “Curie Physical Chemistry”

(3) UMR 218 CNRS/Institut Curie “Nuclear dynamics and genome plasticity”

Catherine Goupillon | alfa
Further information:
http://www.curie.fr
http://www.nature.com/nsmb/index.html

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>