Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel stem cell technology develops a new cell for repairing spinal cord injuries

27.04.2006
Researchers have identified a new way to promote recovery after spinal cord injury with an advance in stem-cell technology. A study conducted by members of the New York State Center of Research Excellence in Spinal Cord Injury and published today in the open access journal Journal of Biology reveals that rats recover from spinal cord injury following transplantation with immature support cells of the central nervous system generated from stem cells.

Transplanting immature support cells called astrocytes, which were first generated in tissue culture from stem cell-like cells called glial restricted precursors, resulted in much better outcomes for spinal cord repair than just transplanting stem cells alone. This result challenges current ideas of how to use stem cells to promote tissue repair.

The research team led by Stephen Davies from Baylor College of Medicine, Houston, USA and colleagues from the University of Rochester Medical Center, New York, USA took embryonic glial precursor cells and induced them to differentiate in culture into a specific type of embryonic astrocyte known to be highly supportive of nerve fibre growth. They hoped these cells would have the repair capabilities of the embryonic spinal cord, which is lost in adults. Davies et al. transplanted these cells into cuts in the spinal cord of adult rats and measured the growth of nerve fibres by labelling them with a dye. They then compared healing and recovery in these rats with the recovery in spinal cord injured rats that received either undifferentiated glial precursor cells or no treatment at all.

Davies et al.’s results show that transplants of the precursor-derived astrocytes promoted the rapid growth of 40% of sensory nerve fibres across the cuts. The transplanted cells also suppressed the formation of scar tissue and aligned damaged tissue at the injury site. Furthermore, neurons in the brain that normally degenerate if their nerve fibres are severed in the spinal cord, were rescued when their cut nerve fibres interacted with the astrocytes transplanted into spinal cord injuries. In contrast, transplanted precursor cells failed to suppress scar formation or promote the growth of any nerve fibres across the injury site. Importantly, in a sensitive test of limb placement during walking, rats that received the astrocyte transplants recovered and were able to walk normally within two weeks, whereas the other rats that received undifferentiated precursor cells did not recover at all and still had difficulties with walking four weeks after the surgery.

These studies make important advances in both stem cell technology and identification of the right cell types for repairing the injured adult nervous system.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>