Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel stem cell technology develops a new cell for repairing spinal cord injuries

27.04.2006
Researchers have identified a new way to promote recovery after spinal cord injury with an advance in stem-cell technology. A study conducted by members of the New York State Center of Research Excellence in Spinal Cord Injury and published today in the open access journal Journal of Biology reveals that rats recover from spinal cord injury following transplantation with immature support cells of the central nervous system generated from stem cells.

Transplanting immature support cells called astrocytes, which were first generated in tissue culture from stem cell-like cells called glial restricted precursors, resulted in much better outcomes for spinal cord repair than just transplanting stem cells alone. This result challenges current ideas of how to use stem cells to promote tissue repair.

The research team led by Stephen Davies from Baylor College of Medicine, Houston, USA and colleagues from the University of Rochester Medical Center, New York, USA took embryonic glial precursor cells and induced them to differentiate in culture into a specific type of embryonic astrocyte known to be highly supportive of nerve fibre growth. They hoped these cells would have the repair capabilities of the embryonic spinal cord, which is lost in adults. Davies et al. transplanted these cells into cuts in the spinal cord of adult rats and measured the growth of nerve fibres by labelling them with a dye. They then compared healing and recovery in these rats with the recovery in spinal cord injured rats that received either undifferentiated glial precursor cells or no treatment at all.

Davies et al.’s results show that transplants of the precursor-derived astrocytes promoted the rapid growth of 40% of sensory nerve fibres across the cuts. The transplanted cells also suppressed the formation of scar tissue and aligned damaged tissue at the injury site. Furthermore, neurons in the brain that normally degenerate if their nerve fibres are severed in the spinal cord, were rescued when their cut nerve fibres interacted with the astrocytes transplanted into spinal cord injuries. In contrast, transplanted precursor cells failed to suppress scar formation or promote the growth of any nerve fibres across the injury site. Importantly, in a sensitive test of limb placement during walking, rats that received the astrocyte transplants recovered and were able to walk normally within two weeks, whereas the other rats that received undifferentiated precursor cells did not recover at all and still had difficulties with walking four weeks after the surgery.

These studies make important advances in both stem cell technology and identification of the right cell types for repairing the injured adult nervous system.

Juliette Savin | alfa
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>