Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural selection at single gene demonstrated

26.04.2006
Developed at the University of Southern California, test based on genomic data avoids pitfalls of older methods

Biologists seeking elusive proof of natural selection at the single-gene level have a powerful new tool at their disposal. Chris Toomajian, postdoctoral researcher in molecular and computational biology in the USC College of Letters, Arts and Sciences, led a group that sought to replace the standard neutral model, a common but unrealistic test for natural selection, with a statistical method based on hard genomic data.

The group’s research will be published online April 25 by Public Library of Science. "Do we now have enough data to see the standard neutral model wasn’t appropriate?" Toomajian asked. "We know something more now about how the population has been structured."

The standard neutral model makes improbable assumptions about population structure, such as assigning each individual an equal chance of reproducing.

Co-author Magnus Nordborg, associate professor of molecular and computational biology in USC College, predicted that earlier research would need to be revisited because the model makes it too easy to infer selection at any given gene. "Once you start looking at enough cases then you realize that, oops, it’s all under selection. I think a lot of that research is going to end up in the trash can," Nordborg said.

The group’s method can be applied to any organism, including humans. The PLoS paper focused on the weed Arabidopsis thaliana, and in particular on the FRIGIDA (FRI) gene, known to influence flowering time. A. thaliana was once a plant that bloomed annually. But two versions of FRI that appeared thousands of years ago enabled the plant to flower year-round, helping it out-compete other plants.

Toomajian and his group showed that these two versions, also called gene variants, are too common to have spread solely by chance. "We’ve shown that for one gene with an important role in that [flowering] process, there’s good evidence that there’s natural selection changing the behavior of the plants," Toomajian said. Why the variants were selected remains unclear, though some have suggested that the plant evolved under pressure from the spread of agriculture. Toomajian’s group identified the gene variants through a comparison of 96 plants over 1,102 short fragments of the genome.

Each variant was assigned a score based on the similarity of two plants around the FRI gene relative to their similarity at other regions in the genome. The higher the score, the less likely it is that a variant could have arisen and spread randomly. The scoring formula accounts for the greater similarity expected in related plants.

Nordborg said that while natural selection is well documented at the whole-organism level, researchers consider biochemical proof of selection "the Holy Grail" of population genetics. "What has proven very difficult is to connect specific molecular changes to selection," Nordborg said. The PLoS paper, along with other recent studies based on intrinsic genomic comparisons, brings biology closer to this goal.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>