Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching the brain switch off ’self’

20.04.2006
Everybody has experienced a sense of "losing oneself" in an activity--whether a movie, sport, sex, or meditation. Now, researchers have caught the brain in the act of losing "self" as it shuts down introspection during a demanding sensory task.

The researchers--led by Rafael Malach and Ilan Goldberg of the Weizmann Institute of Science reporting in the April 20, 2006, issue of Neuron--say their findings show that self-related function actually shuts down during such intense sensory tasks. Thus, an "observer" function in the brain does not appear to play an active part of in the production of our vivid sensory experiences. These findings go against common models of sensory experience that assume that there is some kind of "homunculus", or observer function in the brain that "looks at" sensory brain areas. Thus the finding, they said, has significance for understanding the basic nature of consciousness and perception.

The experimental challenge that the researchers faced was to design one task that could be used to activate specifically either sensory processing or introspection brain areas. Their solution was to ask subjects to look at the same pictures or listen to the same musical phrases, but to perform two different kinds of processing on them. To explore sensory processing, the researchers asked the subjects to use buttons to classify the images as animal/non-animal, or the musical passages as trumpet/non-trumpet. And to study introspection, the researchers asked the subjects to indicate whether emotionally they felt strongly or neutrally about the image or musical passage.

During the tests, the researchers scanned the volunteers’ brains using functional magnetic resonance imaging. In this widely used technique, harmless magnetic fields and radio waves are used to scan blood flow in brain regions, which indicates activity.

The researchers found that regions of the brain activated during sensory processing or self-reflective introspection were quite distinct and segregated. Sensory processing activated the sensory cortex and related structures, while introspection activated the prefrontal cortex, they found.

Importantly, the researchers found that activity in the self-related prefrontal cortex was silenced during intense sensory processing.

As a result, wrote the researchers, "We propose that the role of self-related cortex is not in enabling perceptual awareness, but rather in allowing the individual to reflect upon sensory experiences, to judge their possible significance to the self, and, not less importantly for consciousness research, to allow the individual to report about the occurrence of his or her sensory experience to the outside world.

"To conclude, the picture that emerges from the present results is that, during intense perceptual engagement, all neuronal resources are focused on sensory cortex, and the distracting self-related cortex is inactive. Thus, the term "losing yourself" receives here a clear neuronal correlate. This theme has a tantalizing echoing in Eastern philosophies such as Zen teachings, which emphasize the need to enter into a ’mindless,’ selfless mental state to achieve a true sense of reality," they wrote.

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>