Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching the brain switch off ’self’

20.04.2006
Everybody has experienced a sense of "losing oneself" in an activity--whether a movie, sport, sex, or meditation. Now, researchers have caught the brain in the act of losing "self" as it shuts down introspection during a demanding sensory task.

The researchers--led by Rafael Malach and Ilan Goldberg of the Weizmann Institute of Science reporting in the April 20, 2006, issue of Neuron--say their findings show that self-related function actually shuts down during such intense sensory tasks. Thus, an "observer" function in the brain does not appear to play an active part of in the production of our vivid sensory experiences. These findings go against common models of sensory experience that assume that there is some kind of "homunculus", or observer function in the brain that "looks at" sensory brain areas. Thus the finding, they said, has significance for understanding the basic nature of consciousness and perception.

The experimental challenge that the researchers faced was to design one task that could be used to activate specifically either sensory processing or introspection brain areas. Their solution was to ask subjects to look at the same pictures or listen to the same musical phrases, but to perform two different kinds of processing on them. To explore sensory processing, the researchers asked the subjects to use buttons to classify the images as animal/non-animal, or the musical passages as trumpet/non-trumpet. And to study introspection, the researchers asked the subjects to indicate whether emotionally they felt strongly or neutrally about the image or musical passage.

During the tests, the researchers scanned the volunteers’ brains using functional magnetic resonance imaging. In this widely used technique, harmless magnetic fields and radio waves are used to scan blood flow in brain regions, which indicates activity.

The researchers found that regions of the brain activated during sensory processing or self-reflective introspection were quite distinct and segregated. Sensory processing activated the sensory cortex and related structures, while introspection activated the prefrontal cortex, they found.

Importantly, the researchers found that activity in the self-related prefrontal cortex was silenced during intense sensory processing.

As a result, wrote the researchers, "We propose that the role of self-related cortex is not in enabling perceptual awareness, but rather in allowing the individual to reflect upon sensory experiences, to judge their possible significance to the self, and, not less importantly for consciousness research, to allow the individual to report about the occurrence of his or her sensory experience to the outside world.

"To conclude, the picture that emerges from the present results is that, during intense perceptual engagement, all neuronal resources are focused on sensory cortex, and the distracting self-related cortex is inactive. Thus, the term "losing yourself" receives here a clear neuronal correlate. This theme has a tantalizing echoing in Eastern philosophies such as Zen teachings, which emphasize the need to enter into a ’mindless,’ selfless mental state to achieve a true sense of reality," they wrote.

Heidi Hardman | EurekAlert!
Further information:
http://www.neuron.org
http://www.cell.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>