Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cuttlefish Masters of Disguise Despite Colorblindness

20.04.2006
Cuttlefish are wizards of camouflage. Adept at blending in with their surroundings, cuttlefish are known to have a diverse range of body patterns and can switch between them almost instantaneously. New research from MBL Marine Resources scientists, to appear in the May 2006 issue of the journal Vision Research, confirms that while these masters of disguise change their appearance based on visual cues, they do so while being completely colorblind.

While previous research has reported cuttlefish colorblindness, MBL Research Associate Lydia Mäthger and her colleagues in Roger Hanlon’s laboratory approached the problem in more depth and with a new behavioral assay. The researchers tested cuttlefish (Sepia officinalis) color perception through observing the animal’s behavioral response to a series of checkerboard patterned substrates of various colors and brightnesses.


Cuttlefish are wizards of camouflage. Adept at blending in with their surroundings, cuttlefish are known to have a diverse range of body patterns and can switch between them almost instantaneously.


Mäthger and her colleagues tested cuttlefish color perception through observing the animal’s behavioral response to a series of checkerboard patterned substrates of various colors and brightnesses. This series of images shows that cuttlefish exhibit the same disruptive pattern when they sit on a high contrast black and white or black and green checkerboard, but when on a low contrast (to their eyes) grey and green background, their body pattern remains uniform, suggesting that they can’t tell the two shades apart.

They found that the animals did not respond to the checkerboard pattern when placed on substrates whose color intensities were matched to the Sepia visual system, suggesting that these checkerboards appeared to their eyes as uniform backgrounds. However, their results showed that cuttlefish were able to detect contrast differences of at least 15%, which Mäthger and her colleagues suspect might be a critical factor in uncovering what determines camouflage patterning in cuttlefish.

Despite these results, the vexing question of how cuttlefish master the task of camouflage in low-contrast, color-rich environments such as those found at shallow depths of water, remains to be answered. Mäthger and her colleagues are currently looking at cuttlefish contrast sensitivity in more detail. “Our result that cuttlefish are able to detect contrast differences of at least 15%, is only an upper limit,” says Mäthger. “It’s certainly not the contrast threshold, which we would like to know. It seems that cuttlefish camouflage themselves by matching intensities of objects in the environment and we’re collecting data to test see whether this is really the case.”

In addition to looking at contrast between different objects, Mäthger and her colleagues are testing a variety of other optical clues, in particular, cuttlefish perception of object edges, brightness, and sizes of objects.

Cuttlefish are cephalopods, relatives of octopuses and squid, and are found in all marine habitats worldwide; they are particularly abundant around coral reefs and temperate rock reefs in which the visual habitat is richly varied. Cephalopods can change their appearance with a speed and diversity unparalleled in the animal kingdom. Some squids, octopuses, and cuttlefish can show 30-50 different appearances. Their sophisticated neural control of the skin make cuttlefish an excellent model for studying camouflage.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>