Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cuttlefish Masters of Disguise Despite Colorblindness

20.04.2006
Cuttlefish are wizards of camouflage. Adept at blending in with their surroundings, cuttlefish are known to have a diverse range of body patterns and can switch between them almost instantaneously. New research from MBL Marine Resources scientists, to appear in the May 2006 issue of the journal Vision Research, confirms that while these masters of disguise change their appearance based on visual cues, they do so while being completely colorblind.

While previous research has reported cuttlefish colorblindness, MBL Research Associate Lydia Mäthger and her colleagues in Roger Hanlon’s laboratory approached the problem in more depth and with a new behavioral assay. The researchers tested cuttlefish (Sepia officinalis) color perception through observing the animal’s behavioral response to a series of checkerboard patterned substrates of various colors and brightnesses.


Cuttlefish are wizards of camouflage. Adept at blending in with their surroundings, cuttlefish are known to have a diverse range of body patterns and can switch between them almost instantaneously.


Mäthger and her colleagues tested cuttlefish color perception through observing the animal’s behavioral response to a series of checkerboard patterned substrates of various colors and brightnesses. This series of images shows that cuttlefish exhibit the same disruptive pattern when they sit on a high contrast black and white or black and green checkerboard, but when on a low contrast (to their eyes) grey and green background, their body pattern remains uniform, suggesting that they can’t tell the two shades apart.

They found that the animals did not respond to the checkerboard pattern when placed on substrates whose color intensities were matched to the Sepia visual system, suggesting that these checkerboards appeared to their eyes as uniform backgrounds. However, their results showed that cuttlefish were able to detect contrast differences of at least 15%, which Mäthger and her colleagues suspect might be a critical factor in uncovering what determines camouflage patterning in cuttlefish.

Despite these results, the vexing question of how cuttlefish master the task of camouflage in low-contrast, color-rich environments such as those found at shallow depths of water, remains to be answered. Mäthger and her colleagues are currently looking at cuttlefish contrast sensitivity in more detail. “Our result that cuttlefish are able to detect contrast differences of at least 15%, is only an upper limit,” says Mäthger. “It’s certainly not the contrast threshold, which we would like to know. It seems that cuttlefish camouflage themselves by matching intensities of objects in the environment and we’re collecting data to test see whether this is really the case.”

In addition to looking at contrast between different objects, Mäthger and her colleagues are testing a variety of other optical clues, in particular, cuttlefish perception of object edges, brightness, and sizes of objects.

Cuttlefish are cephalopods, relatives of octopuses and squid, and are found in all marine habitats worldwide; they are particularly abundant around coral reefs and temperate rock reefs in which the visual habitat is richly varied. Cephalopods can change their appearance with a speed and diversity unparalleled in the animal kingdom. Some squids, octopuses, and cuttlefish can show 30-50 different appearances. Their sophisticated neural control of the skin make cuttlefish an excellent model for studying camouflage.

Gina Hebert | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>