Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal brains ’hard-wired’ to recognize predator’s foot movements

20.04.2006
’Life detector’ could be part of evolutionary old system, say researchers

The reason people can approach animals in the wild more easily from a car than by foot may be due to an innate "life detector" tuned to the visual movements of an approaching predator’s feet, says Queen’s University psychologist Niko Troje.

"We believe this visual filter is used to signal the presence of animals that are propelled by the motion of their feet and the force of gravity," suggests Dr. Troje, Canada Research Chair in Vision and Behavioural Sciences.

Conducted with Dr. Cord Westhoff from the Ruhr-Universität Bochum in Germany, the study was funded by the Canada Foundation for Innovation and the German Volkswagen Foundation. It will be published on-line April 18 in the international journal Current Biology.

The researchers suggest this low level locomotion detector is part of an evolutionary old system that helps animals detect quickly – even on the periphery of their visual field – whether a potential predator or prey is nearby. "Research on newly hatched chicks suggests that it works from very early on in an animal’s development," says Dr. Troje. "It seems like their brains are ’hard wired’ for this type of recognition."

One impetus for starting this research several years ago was a question by his young daughter, who asked him why she could get so much closer to wild rabbits in their neighborhood while riding on her bicycle rather than on foot. "I didn’t have an answer for her then. Now, I think I have one," he says.

Dr. Troje’s Motion Capture Laboratory at Queen’s uses high speed cameras to track the three-dimensional trajectories of small reflective markers attached to the central joints of a person’s body. When the subject moves, these seemingly unstructured white marker dots become organized into meaningful images, from which observers can determine the gender, body build, emotional state, and other attributes.

In this study, Dr. Troje’s team used "point-light sequence" videos to display the electronically captured motion of cats, pigeons and humans. People were tested on whether they could tell the direction of movement when these cues were changed.

Scrambling the dots didn’t create a problem, but when the image was inverted, observers were unable to say if the animal was moving to the right or left. The researchers conclude that foot movement is an independent, important visual cue that another animal is nearby.

"The observation that it is relatively easy to get close to wild animals in a car, a canoe, or a similar vehicle might be due to the absence of the typical movement of the feet," says Dr. Troje. Similarly, the creeping movement of a hunting cat can be interpreted in terms of disguising the ballistic component in its locomotion, he adds.

"Our finding might also provide an explanation for seemingly irrational phobias towards animals that don’t fit the ballistic movement pattern of a proposed ’life detector’," he says. "Snakes, insects and spiders, or birds can generate pathological reactions not observed in response to ’normal’ animals."

Nancy Dorrance | EurekAlert!
Further information:
http://www.bml.psyc.queensu.ca

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>