Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Single microRNA causes cancer in transgenic mouse

19.04.2006
Scientists in the Ohio State University Comprehensive Cancer Center say that just one, single, malfunctioning microRNA is sufficient to cause cancer in mice. The discovery offers new insight into the development of some forms of leukemia and lymphoma and at the same time underscores the powerful role that these tiny snippets of non-coding RNA play in cell signaling pathways active in carcinogenesis.

“To the best of our knowledge, this is the first direct evidence that overexpression of a microRNA results in the development of a neoplastic disease, highlighting their potential role in human malignancies,” says Carlo Croce, director of Ohio State’s Human Cancer Genetics Program and professor and chair of the department of molecular virology, immunology and medical genetics.

Over the past several years, scientists have discovered hundreds of microRNAs (miRNAs) and how they regulate gene expression – basically, by blocking messenger RNA’s instructions for protein production. MiRNAs normally help control important biological functions by switching “on” and “off” at different times during cell growth, death, development and differentiation. They can be harmful, though, if they are activated at the wrong time in the wrong place, and that appears to be what happens in some forms of cancer.

The study is published online in the Proceedings of the National Academy of Sciences.

Croce, the senior author of the study and the first to identify a link between miRNAs and cancer, suspected that a particular miRNA, miR155, was a key culprit in some forms of malignant growth. He and his colleagues have been mapping the activity of dozens of miRNAs in various types of normal and malignant tissues for several years. Earlier studies showed that miR155 was unusually active in some types of leukemia and lymphoma, and that its presence indicated a poorer prognosis in patients with breast and lung cancers.

Croce, along with Dr. Stefan Costinean , a research associate, decided to isolate miR155 function by inserting the gene, along with an enhancer, to promote its expression, into fertilized eggs inside a pregnant mouse. The researchers then screened the offspring to find those that had incorporated miR155 into their genomes and followed them to see what effect miR155 might have.

Within three weeks, the transgenic mice developed greatly enlarged spleens, and after six to seven months, they became sick and died. Offspring that did not express miR 155 did not have enlarged spleens and developed normally.

When Costinean examined the spleens of the transgenic mice more closely, he discovered they were full of immature B cells – and only immature B cells.

“This is significant, because a proliferation of these precursor B cells is one of the hallmarks of some types of leukemia and lymphoma,” he said.

B cells, or lymphocytes, are white blood cells that help the body fight infection.

In humans, they are produced from stem cells in the bone marrow and then evolve through several stages before they become mature enough to create antibodies. Antibodies are proteins that sit on the surface of B cells or that are secreted by B cells that can detect the presence of foreign invaders like bacteria, viruses or parasites.

Lab tests revealed that the B cells in enlarged spleens had stopped evolving in the pre-B phase, right at the point where a B cell normally begins to create structures necessary for antibody development.

“We believe that miR 155 initiated the process that blocked further differentiation of these cells,” says Costinean.

Croce says the results are consistent with previous study findings. “We know that miRNAs often act just like oncogenes, in that they promote abnormal cell growth that leads to cancer. Others, however, behave more like tumor suppressors, because they block genes that keep abnormal cell division in check or induce prolonged survival. Our transgenic mouse model clearly shows that miR155 is an oncogene, because it leads to B cell malignancies when it is dysregulated.”

Although they now understand that miR 155 overexpression can lead to cancer, the researchers say they still haven’t identified the exact mechanism that makes that happen. Still, the study suggests that a newly emerging class of artificially designed molecules (called antagomirs) may be able to block miR 155 expression and be an effective therapeutic strategy in patients with acute lymphoblastic leukemia or high grade lymphomas.

The study was funded by grants from the National Cancer Institute.

Co-authors include Nicola Zanesi, a research scientist in the OSU Comprehensive Cancer Center; Yuri Pekarsky and Stefano Volinia, both assistant professors in the department of molecular virology, immunology and medical genetics; Esmerina Tili, a post-doctoral researcher in the OSU Comprehensive Cancer Center; and Nyla Heerema, a professor of pathology in the OSU College of Medicine.

Michelle Gailiun | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>