Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover a genetic switch that links animal growth and cancer

18.04.2006
Laboratory discoveries by scientists at two universities may lead to new directions in cancer therapy drugs. The researchers have discovered that a genetic switch involved in growth and development of an animal is the same one used to prevent normal cells from becoming cancerous.

The findings are reported in the April 18 issue of Current Biology. Experiments were carried out by first author Masamitsu Fukuyama, a postdoctoral scientist working in the laboratories of Joel H. Rothman, a professor in the Department of Molecular, Cellular and Developmental Biology at the University of California, Santa Barbara, and Ann Rougvie, a professor in the Department of Genetics, Cell Biology, and Development at the University of Minnesota. Fukuyama is now an assistant professor at the University of Tokyo.

"The parallels between the control of development during the normal process of maturation and the control of cancer growth are striking," said Rothman. "We recognize that cancer cells in many ways simply mimic what normal cells do in a developing animal, only at an unfortunate time and place."

In life, there is a time to wait and a time to grow, Rothman explained. "Many creatures remain in a waiting state until conditions are right for growth. A tiny redwood, for example, can remain persistently arrested for years inside a seed. Only when the seed senses water will it sprout and initiate development into a mature tree. Many animals similarly halt their development until the environment is right for growth and development."

The process is the same with cells, the basic units of life. Many cells remain in a quiescent state, neither growing nor multiplying until they are triggered to do so by an environmental cue, such as a hormone or injury. Cells possess braking mechanisms that keep them in this quiescent state. When the brakes fail, cells that should be static start growing and dividing, leading to cancer. These brakes are proteins called tumor suppressors.

Working with a tiny roundworm known as Caenorhabditis elegans, an important animal model in biomedical science, the researchers discovered that a tumor suppressor known as PTEN also functions to keep the animal in a waiting state by blocking cell growth when food is absent.

If these animals hatch from their eggs without any source of nutrition, they are able to remain in a perpetually young state for a long time without growing. When they eventually find food they start growing and maturing into adults. The researchers discovered that this juvenile-to-adult switch is controlled by PTEN. When the gene for PTEN is defective, the animals attempt to grow and become mature even when they have no food.

"The attempt of these animals to grow when they should not is not only analogous to the inappropriate growth and proliferation of cells during the formation of tumors in cancer, it also involves the same players," said Rothman. The research team found that PTEN functions with two other proteins –– known as protein kinases –– that are also involved in cancer progression.

This discovery means that other proteins that keep the brakes on growth might be found by looking for additional genes that keep these animals in an immature state.

"Now that we have information about the switch that keeps animals developmentally arrested, we can readily identify other genes involved in this process," said Rothman. Such genes might similarly be involved in the formation of cancers and could provide new therapeutic targets for intervention in cancer.

The current findings took about four years to discover. The worms used in the research develop quickly, growing from an egg to an adult in three days, as compared to mice, for example, which take several months. The similarities between the number and identity of genes in humans and worms allow researchers to extrapolate from worms to humans in their genetic research.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>