Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Movement of chromosome in nucleus visualized

18.04.2006
The cell is understood to be highly organized, with specialized areas for different functions and molecular motors shuttling components around. Researchers from the University of Illinois’ Chicago and Urbana-Champaign campuses now offer the first imaging evidence from live cells of ongoing organization and transport within the cell nucleus.

Genes that are active are located mainly in the central region of the nucleus, while inactive genes are at the periphery. But scientists have had no way to track chromosome movement inside the nucleus or to determine whether the location of the chromosomes was the result of random diffusion or if they are moved around by molecular motors.

In a study published in the April 17 issue of Current Biology, UIC and UIUC researchers show that chromosomes in the cell nucleus are capable of directed, long-range movement that depends on actin and myosin, the major molecular motor complex in the cytoplasm.

Developing a system for observing nuclear motion was difficult because chromosome movement is extremely light-sensitive. One exposure to light, and the chromosome would not move, even though the cell appeared undamaged. After extensive experimentation, researchers at UIUC developed a method that allowed them to take pictures without killing the movement.

Using this system, UIUC graduate student Chien-Hui Chuang studied a chromosome that is normally found in an inactive state near the nuclear periphery and moves to the interior of the nucleus when it receives an activating signal.

"The movement following activation was radically different from the rapid, but short-range, diffuse movement previously observed in these nuclei," said Dr. Andrew Belmont, professor of cell and developmental biology at UIUC, principle investigator and co-author of the study. It was clear that this was directed movement that required a motor, Belmont said, because the chromosome was moving in a nearly straight line perpendicular to the nuclear envelope. The chromosome traveled further in several minutes than ever observed, even over several hours, in the absence of activation.

"It looked nothing like the random, but localized, bouncing around that had been previously observed," he said.

Belmont’s group collaborated with Primal de Lanerolle, professor of physiology and biophysics at UIC, who had discovered a type of myosin in the nucleus. Most myosin molecules are found in the cytoplasm, where they interact with actin filaments to do physical work. Because these molecules can contract muscles or move things around, they are called molecular motors. de Lanerolle and his colleagues were able to offer the Belmont laboratory a number of ways to test whether the chromosome movement was actin/myosin-dependent.

When the researchers introduced a mutant form of myosin protein to the nucleus, the movement slowed. Introducing a mutant actin that does not form filaments stopped the movement, while the introduction of an actin mutant that enhances filament formation accelerated the movement. In addition, when a drug that inhibits actin/myosin interactions was added to the cells, the chromosome movement was stopped completely. These experiments conclusively established that actin and myosin are involved in this chromosome movement.

"While we have known for a long time that actin is present in the nucleus and we had shown that myosin is also present in the nucleus, nobody really knew if they worked together," said de Lanerolle.

"There has been tantalizing evidence of organization in the nucleus--active genes found in the central region associated with nucleus complexes of transcription machinery necessary for gene expression, while inactive genes are found at the periphery," Belmont said. "For the first time, we have been able to observe an active mechanism for directed long-range chromosome movements that depend directly or indirectly on actin and myosin."

Other authors include graduate students Anne Carpenter at UIUC, currently at a post-doctoral fellow at M.I.T., and Beata Fuchsova and Terezina Johnson at UIC.

Jeanne Galatzer-Levy | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>