Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find environmental toxins disruptive to hearing in mammals

13.04.2006
Yale School of Medicine researchers have new data showing chloride ions are critical to hearing in mammals, which builds on previous research showing a chemical used to keep barnacles off boats might disrupt the balance of these ions in ear cells.

"Our data are the first to directly show that chloride ions are crucial for our exquisite sense of hearing," said Joseph Santos-Sacchi, professor in the Departments of Surgery and Neurobiology and first author of the study in the Journal of Neuroscience. "These data also indicate that the hearing in marine and other mammals could be affected by environmental toxins, such as TBT (tributyl tin), because they appear to alter the balance of chloride ions in the outer hair cell."

Sensitive hearing in mammals relies on cochlear amplification resulting from the motor activity of outer hair cells. They are the only group of animals that have outer hair cells. Additionally, TBT is known to damage the immune and hormonal systems of marine mammals.

In this study on guinea pigs, Santos-Sacchi tested whether TBT or salicylate, which is a chemical that occurs naturally in plants and is a component of aspirin, interfered with the guinea pigs’ ability to hear. He found that TBT, salicylate, or otherwise altering the extracellular chloride levels in the cochleas, interfered with the balance of chloride in the outer hair cells and caused profound changes in sound amplification in the inner ear.

In his previous study using TBT on isolated cells only, Santos-Sacchi had proposed that the ear’s ability to perceive sound would be compromised. He also speculated that whales and other marine mammals exposed to TBT would have altered sound localization abilities. The present findings confirm that their hearing is altered in mammals.

"Since many marine mammals use echolocation or sonar to get around, this could be contributing to whales and dolphins beaching and hitting ships," Santos-Sacchi said.

Jacqueline Weaver | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>