Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Evolution follows few of the possible paths to antibiotic resistance

Bacteria gain resistance from only a handful of 120 possible five-step mutational paths in a key gene
Darwinian evolution follows very few of the available mutational pathways to attain fitter proteins, researchers at Harvard University have found in a study of a gene whose mutant form increases bacterial resistance to a widely prescribed antibiotic by a factor of roughly 100,000. Their work indicates that of 120 harrowing, five-step mutational paths that theoretically could grant antibiotic resistance, only about 10 actually endow bacteria with a meaningful evolutionary advantage.

The research is published in the journal Science.

"Just as there are many alternate routes one might follow in driving from Boston to New York, one intrinsic property of DNA is that very many distinct mutational paths link any two variants of a gene," says lead author Daniel M. Weinreich, a research associate in Harvard’s Department of Organismic and Evolutionary Biology. "Although this fact has been recognized for at least 35 years, its implications for evolution by natural selection have remained unexplored. Specifically, it is of great interest to determine whether natural selection regards these many mutational paths equivalently."

Weinreich and colleagues generated a series of mutants found along all 120 possible mutational trajectories involving the gene coding for the enzyme beta-lactamase, which in altered form can serve to inactivate antibiotics including penicillin and cefotaxime. Analyzing how well each variant protected host Escherichia coli cells against treatment with various concentrations of antibiotic, the scientists found that only a very small fraction of these pathways confer ever-increasing resistance in pathogenic microbes, and are therefore relevant to natural selection.

Resistance-granting mutations of beta-lactamase occur in a five-step process, with the 120 possible mutational paths representing all the possible ways in which these five point mutations can occur. Fully 102 of the 120 trajectories are inaccessible to natural selection because they create intermediates that are no more fit than the original gene, and of the remaining 18 Weinreich and colleagues observed that only about half actually had a significant probability of evolutionary occurrence.

"To be followed by an evolving population, natural selection requires that antibiotic resistance increase with each mutation," Weinreich says. "In contrast, most mutational paths of the enzymatic variant we examined fail to continuously increase resistance. Importantly, this is not a reflection of the fact that many more mutations reduce biological function than improve it, because in the present case each mutational path is composed exclusively of mutations known jointly to improve resistance."

Weinreich argues that this finding likely applies to most protein evolution, not just the beta-lactamase enzyme.Although many mutational paths lead to favored variants, only a very small fraction are likely to result in continuously improved fitness and therefore be relevant to the process of natural selection.

Steve Bradt | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>