Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution follows few of the possible paths to antibiotic resistance

13.04.2006
Bacteria gain resistance from only a handful of 120 possible five-step mutational paths in a key gene
Darwinian evolution follows very few of the available mutational pathways to attain fitter proteins, researchers at Harvard University have found in a study of a gene whose mutant form increases bacterial resistance to a widely prescribed antibiotic by a factor of roughly 100,000. Their work indicates that of 120 harrowing, five-step mutational paths that theoretically could grant antibiotic resistance, only about 10 actually endow bacteria with a meaningful evolutionary advantage.

The research is published in the journal Science.

"Just as there are many alternate routes one might follow in driving from Boston to New York, one intrinsic property of DNA is that very many distinct mutational paths link any two variants of a gene," says lead author Daniel M. Weinreich, a research associate in Harvard’s Department of Organismic and Evolutionary Biology. "Although this fact has been recognized for at least 35 years, its implications for evolution by natural selection have remained unexplored. Specifically, it is of great interest to determine whether natural selection regards these many mutational paths equivalently."

Weinreich and colleagues generated a series of mutants found along all 120 possible mutational trajectories involving the gene coding for the enzyme beta-lactamase, which in altered form can serve to inactivate antibiotics including penicillin and cefotaxime. Analyzing how well each variant protected host Escherichia coli cells against treatment with various concentrations of antibiotic, the scientists found that only a very small fraction of these pathways confer ever-increasing resistance in pathogenic microbes, and are therefore relevant to natural selection.

Resistance-granting mutations of beta-lactamase occur in a five-step process, with the 120 possible mutational paths representing all the possible ways in which these five point mutations can occur. Fully 102 of the 120 trajectories are inaccessible to natural selection because they create intermediates that are no more fit than the original gene, and of the remaining 18 Weinreich and colleagues observed that only about half actually had a significant probability of evolutionary occurrence.

"To be followed by an evolving population, natural selection requires that antibiotic resistance increase with each mutation," Weinreich says. "In contrast, most mutational paths of the enzymatic variant we examined fail to continuously increase resistance. Importantly, this is not a reflection of the fact that many more mutations reduce biological function than improve it, because in the present case each mutational path is composed exclusively of mutations known jointly to improve resistance."

Weinreich argues that this finding likely applies to most protein evolution, not just the beta-lactamase enzyme.Although many mutational paths lead to favored variants, only a very small fraction are likely to result in continuously improved fitness and therefore be relevant to the process of natural selection.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>