Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution follows few of the possible paths to antibiotic resistance

13.04.2006
Bacteria gain resistance from only a handful of 120 possible five-step mutational paths in a key gene
Darwinian evolution follows very few of the available mutational pathways to attain fitter proteins, researchers at Harvard University have found in a study of a gene whose mutant form increases bacterial resistance to a widely prescribed antibiotic by a factor of roughly 100,000. Their work indicates that of 120 harrowing, five-step mutational paths that theoretically could grant antibiotic resistance, only about 10 actually endow bacteria with a meaningful evolutionary advantage.

The research is published in the journal Science.

"Just as there are many alternate routes one might follow in driving from Boston to New York, one intrinsic property of DNA is that very many distinct mutational paths link any two variants of a gene," says lead author Daniel M. Weinreich, a research associate in Harvard’s Department of Organismic and Evolutionary Biology. "Although this fact has been recognized for at least 35 years, its implications for evolution by natural selection have remained unexplored. Specifically, it is of great interest to determine whether natural selection regards these many mutational paths equivalently."

Weinreich and colleagues generated a series of mutants found along all 120 possible mutational trajectories involving the gene coding for the enzyme beta-lactamase, which in altered form can serve to inactivate antibiotics including penicillin and cefotaxime. Analyzing how well each variant protected host Escherichia coli cells against treatment with various concentrations of antibiotic, the scientists found that only a very small fraction of these pathways confer ever-increasing resistance in pathogenic microbes, and are therefore relevant to natural selection.

Resistance-granting mutations of beta-lactamase occur in a five-step process, with the 120 possible mutational paths representing all the possible ways in which these five point mutations can occur. Fully 102 of the 120 trajectories are inaccessible to natural selection because they create intermediates that are no more fit than the original gene, and of the remaining 18 Weinreich and colleagues observed that only about half actually had a significant probability of evolutionary occurrence.

"To be followed by an evolving population, natural selection requires that antibiotic resistance increase with each mutation," Weinreich says. "In contrast, most mutational paths of the enzymatic variant we examined fail to continuously increase resistance. Importantly, this is not a reflection of the fact that many more mutations reduce biological function than improve it, because in the present case each mutational path is composed exclusively of mutations known jointly to improve resistance."

Weinreich argues that this finding likely applies to most protein evolution, not just the beta-lactamase enzyme.Although many mutational paths lead to favored variants, only a very small fraction are likely to result in continuously improved fitness and therefore be relevant to the process of natural selection.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Plant escape from waterlogging
17.10.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Study suggests oysters offer hot spot for reducing nutrient pollution
17.10.2017 | Virginia Institute of Marine Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>