Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists learn more about how viruses reproduce, spread

10.04.2006
Biochemists at Wake Forest University School of Medicine have made a surprising discovery about the inner workings of a powerful virus – a discovery that they hope could one day lead to better vaccines or anti-virus medications.

Reporting in the April issue of the Journal of Virology, the researchers have identified a protein that plays an important role in the ability of the vesicular stomatitis virus (VSV) to invade healthy cells and reproduce itself. The finding could play a role in vaccine development and also help scientists develop anti-viral agents to stop similar viruses in their tracks.

Although VSV infects animals, it is not a human pathogen. Nevertheless, scientists study it because of its similarity to viruses such as Ebola and Marburg hemorrhagic fever viruses, as well as rabies virus. "VSV is a good model of a variety of other viruses," said John Connor, Ph.D., a research assistant professor of biochemistry. "Our research has given us a better understanding of how viruses like these are able to do the nasty things they do."

The scientists set out to study the role of a protein known as "matrix," which is produced by VSV. They suspected matrix was important in how VSV is assembled, but unexpectedly discovered the matrix protein is critical in how the virus reproduces and spreads. When they altered the matrix protein, they weakened the virus’ ability to reproduce. The finding has several important implications, Connor said.

Normally, VSV is extremely powerful, with the ability to shut down a cell’s system for making proteins. VSV then takes over the cell’s protein-making machinery and makes its own proteins so it can replicate and spread. The scientists were able to weaken this power by altering the matrix protein, so that VSV cannot make as much protein and does not reproduce as well.

Weakened viruses such as this are often used to make vaccines because they are less likely to be harmful. Currently, another weakened form of VSV is being used for a HIV vaccine that is being tested in humans. To make the vaccine, scientists started with the weakened VSV virus and added a protein from the HIV virus so that VSV "expresses" or makes a fragment of the HIV virus. In theory, when people are inoculated with the vaccine, they will develop antibodies to the HIV protein, and if they are exposed to the actual HIV virus, their bodies will neutralize it and kill it before it infects them.

In all, several weakened forms of VSV have been developed and at least two are currently being tested in HIV vaccines. If they don’t prove effective, vaccine developers can turn to one of the others, including the mutant VSV virus developed by Connor and colleagues.

"Right now, there’s no way of knowing which way of weakening the virus will make the best vaccine," Connor said.

In addition to its potential for vaccine development, the new finding about VSV also provides basic information about how the virus shuts downs a cell’s protein making-abilities and dominates the process.

"We always knew this happened, but the process was like a black box," said Connor. "Now, we know that the matrix protein is involved and is incredibly important in virus reproduction. This pushes forward our knowledge of how this virus is so effective at replicating."

Could the finding about matrix be used to weaken other types of viruses? The scientists aren’t sure, yet. "It’s a strong possibility that every virus will have an Achilles’ heel like this, where they need the function of a viral protein to make lots of virus," said Connor.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>