Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists learn more about how viruses reproduce, spread

10.04.2006
Biochemists at Wake Forest University School of Medicine have made a surprising discovery about the inner workings of a powerful virus – a discovery that they hope could one day lead to better vaccines or anti-virus medications.

Reporting in the April issue of the Journal of Virology, the researchers have identified a protein that plays an important role in the ability of the vesicular stomatitis virus (VSV) to invade healthy cells and reproduce itself. The finding could play a role in vaccine development and also help scientists develop anti-viral agents to stop similar viruses in their tracks.

Although VSV infects animals, it is not a human pathogen. Nevertheless, scientists study it because of its similarity to viruses such as Ebola and Marburg hemorrhagic fever viruses, as well as rabies virus. "VSV is a good model of a variety of other viruses," said John Connor, Ph.D., a research assistant professor of biochemistry. "Our research has given us a better understanding of how viruses like these are able to do the nasty things they do."

The scientists set out to study the role of a protein known as "matrix," which is produced by VSV. They suspected matrix was important in how VSV is assembled, but unexpectedly discovered the matrix protein is critical in how the virus reproduces and spreads. When they altered the matrix protein, they weakened the virus’ ability to reproduce. The finding has several important implications, Connor said.

Normally, VSV is extremely powerful, with the ability to shut down a cell’s system for making proteins. VSV then takes over the cell’s protein-making machinery and makes its own proteins so it can replicate and spread. The scientists were able to weaken this power by altering the matrix protein, so that VSV cannot make as much protein and does not reproduce as well.

Weakened viruses such as this are often used to make vaccines because they are less likely to be harmful. Currently, another weakened form of VSV is being used for a HIV vaccine that is being tested in humans. To make the vaccine, scientists started with the weakened VSV virus and added a protein from the HIV virus so that VSV "expresses" or makes a fragment of the HIV virus. In theory, when people are inoculated with the vaccine, they will develop antibodies to the HIV protein, and if they are exposed to the actual HIV virus, their bodies will neutralize it and kill it before it infects them.

In all, several weakened forms of VSV have been developed and at least two are currently being tested in HIV vaccines. If they don’t prove effective, vaccine developers can turn to one of the others, including the mutant VSV virus developed by Connor and colleagues.

"Right now, there’s no way of knowing which way of weakening the virus will make the best vaccine," Connor said.

In addition to its potential for vaccine development, the new finding about VSV also provides basic information about how the virus shuts downs a cell’s protein making-abilities and dominates the process.

"We always knew this happened, but the process was like a black box," said Connor. "Now, we know that the matrix protein is involved and is incredibly important in virus reproduction. This pushes forward our knowledge of how this virus is so effective at replicating."

Could the finding about matrix be used to weaken other types of viruses? The scientists aren’t sure, yet. "It’s a strong possibility that every virus will have an Achilles’ heel like this, where they need the function of a viral protein to make lots of virus," said Connor.

Karen Richardson | EurekAlert!
Further information:
http://www.wfubmc.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>