Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blind mice recover visual responses using protein from green algae

06.04.2006
Nerve cells that normally are not light sensitive in the retinas of blind mice can respond to light when a green algae protein called channelrhodopsin-2 (ChR2) is inserted into the cell membranes, according to a National Institutes of Health (NIH)-supported study published in the April 6, 2006 issue of the journal Neuron. The study was conducted with mice that had been genetically bred to lose rods and cones, the light-sensitive cells in the retina. This condition is similar to the blinding disease retinitis pigmentosa (RP) in humans.

Vision normally begins when rods and cones, also called photoreceptors, respond to light and send signals through the retina and the optic nerve to the visual cortex of the brain, where visual images are formed. Unfortunately, photoreceptors degenerate and die in some genetic diseases, such as RP. Both mice and humans go progressively blind because with the loss of rods and cones there is no signal sent to the brain.

This study, funded by the National Eye Institute (NEI) of the NIH, raises the intriguing possibility that visual function might be restored by conveying light-sensitive properties to other surviving cells in the retina after the rods and cones have died. Principal investigator Zhuo-Hua Pan, Ph.D., of Wayne State University School of Medicine, and his colleagues, using a gene-transfer approach, introduced the light-absorbing protein ChR2 into the mouse retinal cells that survived after the rods and cones had died. These cells became light sensitive and sent signals through the optic nerve to the visual cortex.

"This innovative gene-transfer approach is certainly compelling," said Paul A. Sieving, M.D., Ph.D., director of vision research at the NIH. "This is a clever approach that offers the possibility of some extent of vision restoration at some time in the future." In addition to RP, there are many forms of retinal degenerative eye diseases that possibly could be treated by gene-based therapies.

The researchers determined that the signals reached the visual cortex in a majority of the ChR2-treated mice. The light sensitivity persisted for at least six months. Did the mice regain usable vision? Probably not, but the investigators suggest a number of technical improvements to their experiments which might make that possible.

"This study demonstrates the feasibility of restoring visual responses in mice after they lose the light-sensitive photoreceptor cells," said Dr. Pan. He and his colleague, Alexander Dizhoor, Ph.D., of Pennsylvania College of Optometry, another of the study authors, think that expressing ChR2 in other types of retinal cells may help to improve this approach. In addition, the authors state it would be interesting for further study to modify the light sensitivity and/or wavelength selectivity of ChR2, or use similar microbial proteins, to produce diverse light-sensitive channels to improve outcomes for the possible restoration of normal vision.

News Office | EurekAlert!
Further information:
http://www.nei.nih.gov
http://www.nih.gov

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>