Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Blind mice recover visual responses using protein from green algae

Nerve cells that normally are not light sensitive in the retinas of blind mice can respond to light when a green algae protein called channelrhodopsin-2 (ChR2) is inserted into the cell membranes, according to a National Institutes of Health (NIH)-supported study published in the April 6, 2006 issue of the journal Neuron. The study was conducted with mice that had been genetically bred to lose rods and cones, the light-sensitive cells in the retina. This condition is similar to the blinding disease retinitis pigmentosa (RP) in humans.

Vision normally begins when rods and cones, also called photoreceptors, respond to light and send signals through the retina and the optic nerve to the visual cortex of the brain, where visual images are formed. Unfortunately, photoreceptors degenerate and die in some genetic diseases, such as RP. Both mice and humans go progressively blind because with the loss of rods and cones there is no signal sent to the brain.

This study, funded by the National Eye Institute (NEI) of the NIH, raises the intriguing possibility that visual function might be restored by conveying light-sensitive properties to other surviving cells in the retina after the rods and cones have died. Principal investigator Zhuo-Hua Pan, Ph.D., of Wayne State University School of Medicine, and his colleagues, using a gene-transfer approach, introduced the light-absorbing protein ChR2 into the mouse retinal cells that survived after the rods and cones had died. These cells became light sensitive and sent signals through the optic nerve to the visual cortex.

"This innovative gene-transfer approach is certainly compelling," said Paul A. Sieving, M.D., Ph.D., director of vision research at the NIH. "This is a clever approach that offers the possibility of some extent of vision restoration at some time in the future." In addition to RP, there are many forms of retinal degenerative eye diseases that possibly could be treated by gene-based therapies.

The researchers determined that the signals reached the visual cortex in a majority of the ChR2-treated mice. The light sensitivity persisted for at least six months. Did the mice regain usable vision? Probably not, but the investigators suggest a number of technical improvements to their experiments which might make that possible.

"This study demonstrates the feasibility of restoring visual responses in mice after they lose the light-sensitive photoreceptor cells," said Dr. Pan. He and his colleague, Alexander Dizhoor, Ph.D., of Pennsylvania College of Optometry, another of the study authors, think that expressing ChR2 in other types of retinal cells may help to improve this approach. In addition, the authors state it would be interesting for further study to modify the light sensitivity and/or wavelength selectivity of ChR2, or use similar microbial proteins, to produce diverse light-sensitive channels to improve outcomes for the possible restoration of normal vision.

News Office | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>