Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hepatitis C therapy: Inhibiting newly discovered microDNA molecule

06.04.2006
Reduces virus RNA abundance

Last fall Dr. Peter Sarnow and a team of Stanford University scientists reported that the hepatitis C virus needs a specific microRNA, named miR-122, in order to replicate in cultured liver cells. When the scientists inactivated the microRNA, the amount of hepatitis C virus RNA was reduced by approximately 80 percent. The discovery was widely heralded for its potential to develop new antiviral agents against hepatitis C, the most common blood-borne viral infection in the United States, affecting more than 2.5 million Americans and a staggering 170 million people worldwide. The best treatment regimens now available are difficult, expensive, laden with serious side effects and effective in only half the cases.

Dr. Sarnow discusses the most recent findings in this work on April 5 at Experimental Biology 2006 in San Francisco. His presentation is part of the scientific program of the American Society for Biochemistry and Molecular Biology.

MicroRNAs, or miRNAs for short, are small RNA molecules that regulate genes in many plant and animal species. Although miRNAs were not discovered until the mid-1990, a growing number of studies suggest that over 300 human genes encode microRNAs and that these microRNAs may control gene expression for as much as a third of the human genome, acting as key regulators of processes as diverse as early development, cell proliferation and cell death, and cell differentiation. Some miRNAs are located throughout the body, while others are found only in specific tissue. The miRNA whose surprising new role was discovered by Dr. Sarnow and his colleagues is located only in the liver. The Sarnow team found that miR-122 binds to a specific noncoding binding region in virus, called target 5’ NCR. This is the first example of an animal RNA that interacts with its target 5’ NCR, and opens an interesting possibility that other viral 5’ NCRs are similarly targeted by different miRNAs.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>