Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA gene vaccine protects against harmful protein of Alzheimer’s disease

31.03.2006
Doses of DNA-gene-coated gold particles protect mice against a protein implicated in Alzheimer’s disease, researchers at UT Southwestern Medical Center have found.

By pressure-injecting the gene responsible for producing the specific protein – called amyloid-beta 42 – the researchers caused the mice to make antibodies and greatly reduce the protein’s build-up in the brain. Accumulation of amyloid-beta 42 in humans is a hallmark of Alzheimer’s disease.

"The whole point of the study is to determine whether the antibody is therapeutically effective as a means to inhibit the formation of amyloid-beta storage in the brain, and it is," said Dr. Roger Rosenberg, the study’s senior author and director of the Alzheimer’s Disease Center at UT Southwestern.

The gene injection avoids a serious side-effect that caused the cancellation of a previous multi-center human trial with amyloid-beta 42, researchers said. UT Southwestern did not participate in that trial. In that earlier study, people received injections of the protein itself and some developed dangerous brain inflammation.

The new study is available online and appears in an upcoming issue of the Journal of the Neurological Sciences.

The researchers used mutant mice with two defective human genes associated with Alzheimer’s, genes that produce amyloid-beta 42. "By seven months, the mice are storing abundant amounts of amyloid-beta 42," said Dr. Rosenberg, who holds the Abe (Brunky), Morris and William Zale Distinguished Chair in Neurology.

While the mice were young, the scientists coated microscopically small gold particles with human amyloid-beta 42 genes attached to other genes that program cells to make the protein. The particles were then injected with a gene gun into the skin cells of the mice’s ears using a blast of helium.

After receiving 11 injections over several months, the mice showed a high level of antibodies to amyloid-beta 42, and a 60 percent to 77.5 percent reduction of plaques in their brains.

As controls, the researchers also either injected mutant mice with the gene for a related but harmless protein, amyloid-beta 16, or with a gene vaccine that lacked any amyloid genes. These treatments did not cause antibody production, and the mice showed the large amounts of amyloid-beta 42 brain plaques normally seen in animals with these mutations.

The gene injection showed superior results compared to a previous human study in which amyloid-beta 42 protein itself was injected into muscle, Dr. Rosenberg said. That study was halted when a small percentage of participants developed inflammation of the brain and spinal cord.

Injecting the gene, in contrast, caused no brain inflammation in the mice.

Dr. Rosenberg said the difference was partly because in the human trial, the protein was injected along with a substance called an adjuvant, which increased the immune response to abnormal excessive levels, causing the dangerous brain inflammation. In addition, the immune response in humans may have involved antibodies called Th1, which were probably partly responsible for the inflammation. The gene injection in the mouse study produced Th2 antibodies, which have a low probability of causing brain inflammation. Furthermore, no adjuvant was needed for antibody production.

The gene immunization is now undergoing further animal studies, with the ultimate goal being a clinical trial in humans. The researchers also plan to see if it can reverse the size of established plaques in the brains of mice.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu
http://www.utsouthwestern.edu/findfac/professional/0,2356,16236,00.html

More articles from Life Sciences:

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

nachricht How gut bacteria can make us ill
18.01.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>