Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny water purification packet helps save lives worldwide

30.03.2006
Chemists have developed a powerful household water purification system that puts the cleansing power of an industrial water treatment plant into a container the size of a ketchup packet.

The researchers have shown that the tiny packet, which acts as a chemical filter, can be added to highly contaminated water to dramatically reduce pathogen-induced diarrhea — the top killer of children in much of the developing world.

The packets also show promise for boosting water safety during emergencies and natural disasters, such as earthquakes, floods and hurricanes, where water purity is suddenly compromised, the researchers say. The lifesaving packets, whose use is being expanded globally, was described today at the 231st national meeting of the American Chemical Society.

Worldwide, approximately 1.5 million children under age five die each year from simple diarrhea acquired from pathogens found in drinking water, according to public health experts. That translates to about 4,000 children dying each day as a result of contaminated water.

“It’s like a 9-11 catastrophe happening everyday worldwide, but this is a tragedy that can be prevented,” says Greg Allgood, Ph.D., director of Procter & Gamble’s Children’s Safe Drinking Water program, which manufactures the packets. The company has been developing the packets since 1995 in collaboration with the U.S. Centers for Disease Control and Prevention (CDC).

In those countries that lack a modern water purification system, boiling is often the main water decontamination method, Allgood says. But boiling must be done properly to remain effective. In many parts of the world, drinking water is not cleaned at all, he adds.

“There’s clearly a need for simple, safe and effective decontamination systems for third world countries,” Allgood says. Unlike large stationary purification systems, the packets are extremely small and portable, which allows them to be easily used in remote locations and emergency situations. “This tiny system seems to fit that bill by quickly providing high water quality that can rival that of a modern treatment plant.”

In randomized, controlled trials conducted by the CDC involving a total of 25,000 people in three countries — Guatemala, Pakistan and Kenya — the chemical packets reduced the incidence of diarrhea by about 50 percent, Allgood says. The packets also were tested by researchers from Johns Hopkins University at a refugee camp in Liberia, where they produced more than a 90 percent reduction in diarrhea, the scientist says.

Called “PUR Purifier of Water,” the system consists of a packet containing a grayish powder composed of a variety of chemicals that collectively are capable of removing contaminates within minutes of being added to water. The main active ingredients of the powder are calcium hypochlorite (bleach), which can kill a wide range of deadly pathogens, and ferric sulfate, a particle binder that can remove impurities such as dirt and also disease-causing pathogens that aren’t killed by the bleach. The packets can kill water-born pathogens that cause cholera, typhoid and dysentery; remove a variety of toxic metals, including lead, arsenic and mercury; and also remove dangerous pesticides like DDT and PCB, Allgood says.

The device is very efficient: A single packet can decontaminate 2 ½ gallons of drinking water, or enough drinking water to sustain a typical household for about 2-3 days, Allgood says. The packet is added to a large container of impure water, stirred, filtered through a cloth to remove impurities and then allowed to sit for 20 minutes. The net result is clear, safe drinking water, the researcher says.

The price of safety comes relatively cheap, Allgood says. Each packet costs a few cents and Procter & Gamble has been providing them free to some countries hit hard by sudden water emergencies, he says. To date, more than 40 million of these packets have been distributed worldwide for both sustained water remediation and emergency relief, Allgood says.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>