Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny water purification packet helps save lives worldwide

30.03.2006
Chemists have developed a powerful household water purification system that puts the cleansing power of an industrial water treatment plant into a container the size of a ketchup packet.

The researchers have shown that the tiny packet, which acts as a chemical filter, can be added to highly contaminated water to dramatically reduce pathogen-induced diarrhea — the top killer of children in much of the developing world.

The packets also show promise for boosting water safety during emergencies and natural disasters, such as earthquakes, floods and hurricanes, where water purity is suddenly compromised, the researchers say. The lifesaving packets, whose use is being expanded globally, was described today at the 231st national meeting of the American Chemical Society.

Worldwide, approximately 1.5 million children under age five die each year from simple diarrhea acquired from pathogens found in drinking water, according to public health experts. That translates to about 4,000 children dying each day as a result of contaminated water.

“It’s like a 9-11 catastrophe happening everyday worldwide, but this is a tragedy that can be prevented,” says Greg Allgood, Ph.D., director of Procter & Gamble’s Children’s Safe Drinking Water program, which manufactures the packets. The company has been developing the packets since 1995 in collaboration with the U.S. Centers for Disease Control and Prevention (CDC).

In those countries that lack a modern water purification system, boiling is often the main water decontamination method, Allgood says. But boiling must be done properly to remain effective. In many parts of the world, drinking water is not cleaned at all, he adds.

“There’s clearly a need for simple, safe and effective decontamination systems for third world countries,” Allgood says. Unlike large stationary purification systems, the packets are extremely small and portable, which allows them to be easily used in remote locations and emergency situations. “This tiny system seems to fit that bill by quickly providing high water quality that can rival that of a modern treatment plant.”

In randomized, controlled trials conducted by the CDC involving a total of 25,000 people in three countries — Guatemala, Pakistan and Kenya — the chemical packets reduced the incidence of diarrhea by about 50 percent, Allgood says. The packets also were tested by researchers from Johns Hopkins University at a refugee camp in Liberia, where they produced more than a 90 percent reduction in diarrhea, the scientist says.

Called “PUR Purifier of Water,” the system consists of a packet containing a grayish powder composed of a variety of chemicals that collectively are capable of removing contaminates within minutes of being added to water. The main active ingredients of the powder are calcium hypochlorite (bleach), which can kill a wide range of deadly pathogens, and ferric sulfate, a particle binder that can remove impurities such as dirt and also disease-causing pathogens that aren’t killed by the bleach. The packets can kill water-born pathogens that cause cholera, typhoid and dysentery; remove a variety of toxic metals, including lead, arsenic and mercury; and also remove dangerous pesticides like DDT and PCB, Allgood says.

The device is very efficient: A single packet can decontaminate 2 ½ gallons of drinking water, or enough drinking water to sustain a typical household for about 2-3 days, Allgood says. The packet is added to a large container of impure water, stirred, filtered through a cloth to remove impurities and then allowed to sit for 20 minutes. The net result is clear, safe drinking water, the researcher says.

The price of safety comes relatively cheap, Allgood says. Each packet costs a few cents and Procter & Gamble has been providing them free to some countries hit hard by sudden water emergencies, he says. To date, more than 40 million of these packets have been distributed worldwide for both sustained water remediation and emergency relief, Allgood says.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>