Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice bioengineers pioneer techniques for knee repair

29.03.2006
Breakthrough method in growing replacement cartilage

A breakthrough self-assembly technique for growing replacement cartilage offers the first hope of replacing the entire articular surface of knees damaged by arthritis. The technique, developed at Rice University’s Musculoskeletal Bioengineering Laboratory, is described in this month’s issue of the journal Tissue Engineering.


A breakthrough self-assembly technique for growing replacement cartilage offers hope of replacing the entire articular surface of knees damaged by arthritis. The technique, developed by Rice University bioengineer Kyriacos Athanasiou and postdoctoral researcher Jerry Hu involves a self-assembly method of growing replacement tissue. Using cells, Hu and Athanasiou have refined the technique to grow the entire articular surface of the lower femur. Each of these samples shown here were tailored three-dimensionally to fit a specific rabbit femur.


A breakthrough self-assembly technique for growing replacement cartilage offers hope of replacing the entire articular surface of knees damaged by arthritis. The technique, developed by Rice University bioengineer Kyriacos Athanasiou and postdoctoral researcher Jerry Hu involves a self-assembly method of growing replacement tissue. Using cells, Hu and Athanasiou have refined the technique to grow the entire articular surface of the lower femur. Each of these samples shown here were tailored three-dimensionally to fit a specific rabbit femur.

"This has significant ramifications because we are now beginning to talk, for the first time, about the potential treatment of entire arthritic joints and not just small defects," said lead researcher and lab director Kyriacos Athanasiou, the Karl F. Hasselmann Professor of Bioengineering.

Athanasiou’s new self-assembly method involves a break from conventional wisdom in bioengineering; almost all previous attempts to grow replacement transplant tissues involved the use of biodegradable implants that are seeded with donor cells and growth factors. These implants, which engineers refer to as scaffolds, foster the tissue growth process by acting as a template for new growth, but they always present a risk of toxicity due to the fact that they are made of materials that aren’t naturally found in the body.

In the newly reported findings, Athanasiou and postdoctoral researcher Jerry Hu, using nothing but donor cells, grew dime-sized disks of cartilage with properties approaching those of native tissue. In a follow-up study due for publication soon, graduate student Christopher Revell refined the process to produce disks that are virtually identical to native tissue in terms of both mechanical and biochemical makeup.

In a third, and perhaps most impressive breakthrough, Athanasiou and Hu used the self-assembly approach to grow the entire articular surface of the distal femur. Each of these unbroken samples were tailored three-dimensionally to fit a specific rabbit femur.

"If you told me 10 years ago that we would be making entire articular end caps via self assembly I would have said you were crazy," said Athanasiou. "The fact that we can do this is an indication of how far the discipline of tissue engineering has progressed."

Unlike cartilage, most tissues in our bodies – including skin, blood vessels and bone – regenerate themselves constantly. Tissue engineers try to capitalize on the body’s own regenerative powers to grow replacement tissues that can be transplanted without risk of rejection. Donor cells from the patient are used as a starting place to eliminate rejection risks.

Most tissue engineering involves honeycombed plastic templates or hydrogels called scaffolds that are used to guide colonies of donor cells. Donor cells can be either adult stem cells or other immature cells. Athanasiou’s latest work was done using chondrocytes, or cartilage cells.

Athanasiou, a former president of the international Biomedical Engineering Society, helped pioneer the development of coin-sized scaffolds in the early 1990s that are now the state-of-the-art clinical option for repairing small defects in articular knee cartilage.

His lab is also working on techniques to grow replacement knee menisci, the kidney shaped wedges of cartilage that sit between the femur and tibia and absorb the compressive shock that the bones undergo during walking and running. Over the past 18 months, he and his students Adam Aufderheide and Gwen Hoben have perfected methods of growing meniscus-shaped pieces of cartilage, but they are still trying to perfect the mechanical strength of the engineered meniscus tissue, which must be able to withstand up to an astounding 2,400 pounds per square inch of compressive pressure.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>