Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rice bioengineers pioneer techniques for knee repair

29.03.2006
Breakthrough method in growing replacement cartilage

A breakthrough self-assembly technique for growing replacement cartilage offers the first hope of replacing the entire articular surface of knees damaged by arthritis. The technique, developed at Rice University’s Musculoskeletal Bioengineering Laboratory, is described in this month’s issue of the journal Tissue Engineering.


A breakthrough self-assembly technique for growing replacement cartilage offers hope of replacing the entire articular surface of knees damaged by arthritis. The technique, developed by Rice University bioengineer Kyriacos Athanasiou and postdoctoral researcher Jerry Hu involves a self-assembly method of growing replacement tissue. Using cells, Hu and Athanasiou have refined the technique to grow the entire articular surface of the lower femur. Each of these samples shown here were tailored three-dimensionally to fit a specific rabbit femur.


A breakthrough self-assembly technique for growing replacement cartilage offers hope of replacing the entire articular surface of knees damaged by arthritis. The technique, developed by Rice University bioengineer Kyriacos Athanasiou and postdoctoral researcher Jerry Hu involves a self-assembly method of growing replacement tissue. Using cells, Hu and Athanasiou have refined the technique to grow the entire articular surface of the lower femur. Each of these samples shown here were tailored three-dimensionally to fit a specific rabbit femur.

"This has significant ramifications because we are now beginning to talk, for the first time, about the potential treatment of entire arthritic joints and not just small defects," said lead researcher and lab director Kyriacos Athanasiou, the Karl F. Hasselmann Professor of Bioengineering.

Athanasiou’s new self-assembly method involves a break from conventional wisdom in bioengineering; almost all previous attempts to grow replacement transplant tissues involved the use of biodegradable implants that are seeded with donor cells and growth factors. These implants, which engineers refer to as scaffolds, foster the tissue growth process by acting as a template for new growth, but they always present a risk of toxicity due to the fact that they are made of materials that aren’t naturally found in the body.

In the newly reported findings, Athanasiou and postdoctoral researcher Jerry Hu, using nothing but donor cells, grew dime-sized disks of cartilage with properties approaching those of native tissue. In a follow-up study due for publication soon, graduate student Christopher Revell refined the process to produce disks that are virtually identical to native tissue in terms of both mechanical and biochemical makeup.

In a third, and perhaps most impressive breakthrough, Athanasiou and Hu used the self-assembly approach to grow the entire articular surface of the distal femur. Each of these unbroken samples were tailored three-dimensionally to fit a specific rabbit femur.

"If you told me 10 years ago that we would be making entire articular end caps via self assembly I would have said you were crazy," said Athanasiou. "The fact that we can do this is an indication of how far the discipline of tissue engineering has progressed."

Unlike cartilage, most tissues in our bodies – including skin, blood vessels and bone – regenerate themselves constantly. Tissue engineers try to capitalize on the body’s own regenerative powers to grow replacement tissues that can be transplanted without risk of rejection. Donor cells from the patient are used as a starting place to eliminate rejection risks.

Most tissue engineering involves honeycombed plastic templates or hydrogels called scaffolds that are used to guide colonies of donor cells. Donor cells can be either adult stem cells or other immature cells. Athanasiou’s latest work was done using chondrocytes, or cartilage cells.

Athanasiou, a former president of the international Biomedical Engineering Society, helped pioneer the development of coin-sized scaffolds in the early 1990s that are now the state-of-the-art clinical option for repairing small defects in articular knee cartilage.

His lab is also working on techniques to grow replacement knee menisci, the kidney shaped wedges of cartilage that sit between the femur and tibia and absorb the compressive shock that the bones undergo during walking and running. Over the past 18 months, he and his students Adam Aufderheide and Gwen Hoben have perfected methods of growing meniscus-shaped pieces of cartilage, but they are still trying to perfect the mechanical strength of the engineered meniscus tissue, which must be able to withstand up to an astounding 2,400 pounds per square inch of compressive pressure.

Jade Boyd | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht The big clean up after stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>