Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate change: The rice genome to the rescue

29.03.2006
The sequencing of the rice genome could help mitigate the impact of climate change on the world’s poor

New evidence is emerging that climate change could reduce not only the world’s ability to produce food but also international efforts to cut poverty. However, the recent sequencing of the rice genome is already providing researchers with some of the tools they need to help poor rice farmers and consumers avoid the worst effects of the problem.

The new knowledge generated by the sequencing effort is allowing scientists to both develop new rice varieties faster and with the specific characteristics needed to deal with climate change, such as tolerance of higher temperatures. However, scientists are calling for more research to fully understand the impact of climate change – especially the extreme weather it may cause – on international efforts to reduce poverty and ensure food security.

A "Climate Change and Rice" planning workshop this month at the International Rice Research Institute (IRRI) in the Philippines was told that climate change is already affecting Asia’s ability to produce rice, and that this could eventually slow efforts to reduce poverty in the region, where most of the world’s poor live.

The workshop was informed that, to overcome many of the climate change–related problems facing rice production in Asia – and continue to meet the demand for rice in the region – yields will have to double over the next 50 years. Research has confirmed that global warming will make rice crops less productive with increasing temperatures decreasing yields.

"Clearly, climate change is going to have a major impact on our ability to grow rice," Robert S. Zeigler, IRRI director general, said. "We can’t afford to sit back and be complacent about this because rice production feeds almost half the world’s population while providing vital employment to millions as well, with most of them being very poor and vulnerable."

For these reasons, Dr. Zeigler announced at the workshop that IRRI – in an unprecedented move – was ready to put up US$2 million of its own research funds as part of an effort to raise $20–25 million for a major five-year project to mitigate the effects of climate change on rice production. "We need to start developing rice varieties that can tolerate higher temperatures and other aspects of climate change right now," he said.

"Fortunately, the recent sequencing of the rice genome will allow us to do this much faster than we could have in the past," Dr. Zeigler added. "But, in addition to new rice varieties, we must develop other technologies that will help poor rice farmers deal with climate change."

In one of several examples presented to last week’s climate workshop, researchers mentioned El Niño weather phenomena that hit the Philippines in 1996-97 and caused a severe drought, resulting in a sharp drop in national rice production. Other examples focused on the impact of climate change and variability on gross domestic product, generally causing it to slip by several percentage points.

"One of the main problems with climate change is that the effects are felt mostly in poor, underdeveloped countries because of their reliance on agriculture as one of the main drivers for national development," Dr. Zeigler said. "In turn, agriculture is very dependent on climate.

"Another more insidious effect may be more frequent extreme weather events such as typhoons, floods and droughts," Dr. Zeigler warned. "IRRI’s research has shown that even one drought year can push millions of rice farmers back below the poverty line. This affects the whole family for many years after the drought year, as they will have sold their livestock and withdrawn their children from school just to survive."

IRRI’s senior climate change researcher, John Sheehy, told the workshop that poor farmers need help in several challenging new areas. "We need to develop rice varieties tolerant of higher temperatures that can maintain yield and quality when extreme temperatures occur," Dr. Sheehy said. "We also need rice varieties that can take advantage of higher levels of CO2 in the atmosphere, rice that is vigorous enough to recover quickly from extreme weather events and disasters, and very high yielding rice that will provide a supply buffer for poor communities during periods of change.

"We need to be able to protect poor people from the harmful effects of climate change, and rice is especially important because most of the world’s poor depend on it," he added. "We also need to ensure that the world community is not adversely affected by greenhouse gas emissions from rice production systems."

Dr. Sheehy said researchers need to acquire knowledge and develop technologies critical to ensuring that rice production systems are sustainable in the face of climate change and do not adversely contribute to climate change.

Duncan Macintosh | EurekAlert!
Further information:
http://www.cgiar.org

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

New Headlamp Dimension: Fully Adaptive Light Distribution in Real Time

29.06.2017 | Automotive Engineering

Turning the Climate Tide by 2020

29.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>