Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Junk DNA may not be so junky after all

27.03.2006
Researchers develop new tool to find gene control regions

Researchers at the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins have invented a cost-effective and highly efficient way of analyzing what many have termed "junk" DNA and identified regions critical for controlling gene function. And they have found that these control regions from different species don’t have to look alike to work alike. The study will be published online at Science Express March 23.

The researchers developed a new system that uses zebrafish to test mammalian DNA and identify DNA sequences, known as enhancers, involved in turning on a gene. In studying RET, the major gene implicated in Hirschsprung disease and multiple endocrine neoplasia (MEN2), the team identified DNA sequences that can control RET but had not been identified using standard methods. Hirschsprung disease, also known as congenital megacolon, is a relatively common birth defect marked by bowel obstruction. MEN2 is an inherited predisposition to neuroendocrine cancers.

The notion that mutations in enhancers play a role in human disease progression has been difficult to confirm because usually enhancers are located in the 98 percent of the human genome that does not code for protein, termed non-coding DNA. Unlike DNA sequences that code for protein, non-coding DNA, sometimes referred to as "junk" DNA, follows few rules for organization and sequence patterns and therefore is more difficult to study.

"The difficulty with human genetic approaches to common disease is that we lack the power to precisely localize DNA sequences that are associated with disease, often leaving us immense stretches of DNA to look at," says one of the study’s corresponding authors, Andy McCallion, Ph.D., an assistant professor in the McKusick-Nathans Institute. Most often one is limited to looking in the most obvious places, which may not yield the best results. "Until now," he says, "we’ve only been able to look under the lamplights for the car keys."

Traditionally, DNA sequences are thought to have to look similar to function similarly; this is how scientists identify genes in other species, a strategy best used for studying similar species. From an evolutionary standpoint, the last common ancestor of human and zebrafish lived more than 300 million years ago. Because DNA sequences in each species have changed over time, traditional methods of comparing DNA sequences between humans and zebrafish have failed to identify any potential enhancers around the RET gene because the DNA sequences differ too much.

That drove the Hopkins researchers to seek and develop this new system, by which virtually any DNA sequence can be tested for its ability to turn on a marker gene in zebrafish embryos. The system is a significant advance over current methods in this model species, allowing researchers to study more sequences in a shorter period of time. Using this, they identified several human enhancers able to control expression consistent with the zebrafish ret gene.

Zebrafish have become the ideal system for doing these types of large scale studies. They are small - only about a half inch in length - they grow quickly, and are relatively inexpensive to maintain compared to mice or rats. "Zebrafish are the only vertebrate embryo you can even think about doing this type of work in," says Shannon Fisher, M.D., Ph.D., the study’s first author and an assistant professor in cell biology in Johns Hopkins’ Institute for Basic Biomedical Sciences.

The researchers’ next steps are further study of the RET enhancers they found to identify other mutations that might contribute to Hirschsprung disease and MEN2, and to entice other investigators to collectively build a database of human enhancers. "If there’s one thing we’ve learned here, it’s that we are not very good at recognizing enhancers. We just don’t know what they look like," says Fisher. "We are anxious for others to use this technology on their favorite genes."

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinsmedicine.org/geneticmedicine/index.html

More articles from Life Sciences:

nachricht The body's street sweepers
18.12.2017 | Ludwig-Maximilians-Universität München

nachricht Life on the edge prepares plants for climate change
18.12.2017 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>