Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Junk DNA may not be so junky after all

27.03.2006
Researchers develop new tool to find gene control regions

Researchers at the McKusick-Nathans Institute of Genetic Medicine at Johns Hopkins have invented a cost-effective and highly efficient way of analyzing what many have termed "junk" DNA and identified regions critical for controlling gene function. And they have found that these control regions from different species don’t have to look alike to work alike. The study will be published online at Science Express March 23.

The researchers developed a new system that uses zebrafish to test mammalian DNA and identify DNA sequences, known as enhancers, involved in turning on a gene. In studying RET, the major gene implicated in Hirschsprung disease and multiple endocrine neoplasia (MEN2), the team identified DNA sequences that can control RET but had not been identified using standard methods. Hirschsprung disease, also known as congenital megacolon, is a relatively common birth defect marked by bowel obstruction. MEN2 is an inherited predisposition to neuroendocrine cancers.

The notion that mutations in enhancers play a role in human disease progression has been difficult to confirm because usually enhancers are located in the 98 percent of the human genome that does not code for protein, termed non-coding DNA. Unlike DNA sequences that code for protein, non-coding DNA, sometimes referred to as "junk" DNA, follows few rules for organization and sequence patterns and therefore is more difficult to study.

"The difficulty with human genetic approaches to common disease is that we lack the power to precisely localize DNA sequences that are associated with disease, often leaving us immense stretches of DNA to look at," says one of the study’s corresponding authors, Andy McCallion, Ph.D., an assistant professor in the McKusick-Nathans Institute. Most often one is limited to looking in the most obvious places, which may not yield the best results. "Until now," he says, "we’ve only been able to look under the lamplights for the car keys."

Traditionally, DNA sequences are thought to have to look similar to function similarly; this is how scientists identify genes in other species, a strategy best used for studying similar species. From an evolutionary standpoint, the last common ancestor of human and zebrafish lived more than 300 million years ago. Because DNA sequences in each species have changed over time, traditional methods of comparing DNA sequences between humans and zebrafish have failed to identify any potential enhancers around the RET gene because the DNA sequences differ too much.

That drove the Hopkins researchers to seek and develop this new system, by which virtually any DNA sequence can be tested for its ability to turn on a marker gene in zebrafish embryos. The system is a significant advance over current methods in this model species, allowing researchers to study more sequences in a shorter period of time. Using this, they identified several human enhancers able to control expression consistent with the zebrafish ret gene.

Zebrafish have become the ideal system for doing these types of large scale studies. They are small - only about a half inch in length - they grow quickly, and are relatively inexpensive to maintain compared to mice or rats. "Zebrafish are the only vertebrate embryo you can even think about doing this type of work in," says Shannon Fisher, M.D., Ph.D., the study’s first author and an assistant professor in cell biology in Johns Hopkins’ Institute for Basic Biomedical Sciences.

The researchers’ next steps are further study of the RET enhancers they found to identify other mutations that might contribute to Hirschsprung disease and MEN2, and to entice other investigators to collectively build a database of human enhancers. "If there’s one thing we’ve learned here, it’s that we are not very good at recognizing enhancers. We just don’t know what they look like," says Fisher. "We are anxious for others to use this technology on their favorite genes."

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.hopkinsmedicine.org/geneticmedicine/index.html

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>