Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New light on muscle efficiency: it is not the power-plant.

23.03.2006
A recent study from Scandinavia shows that the well-known differences between individuals in the efficiency of converting energy stored in food to work done by muscles are related to muscle fibre type composition and to the content of specific molecules in muscle.

When muscles contract they use energy that is derived from food. It is a two-step process. The first step occurs in mitochondria, where the energy from molecules like glucose or fats is locked away in ATP (adenosine triphosphate). This ATP travels from the mitochondria to sites in the muscle where energy is needed, and the energy is released and used. At both of these stages there is the possibility for energy to be lost, causing a reduction in efficiency. The proportion of food energy that ends up making the muscles move is a measure of the efficiency of the system, and this is known to vary considerably between people.

The main theory is that this variation comes from differences in the efficiency with which mitochondria convert food energy to ATP. But results published in this fortnight’s edition of The Journal of Physiology indicate that any differences in the efficiency of individual mitochondria cannot explain the differences in overall efficiency between people. Consequently these differences must lie in the way the ATP is used within the muscle.

The research was carried out on healthy human volunteers by a team of scientists working at the University of Southern Denmark, Odense, and the Karolinska Institute/GIH, in Stockholm, Sweden. It combined exercise testing of individuals, with laboratory analysis of muscle samples.

The results showed that work efficiency was correlated with muscle fibre type composition and with the amount of UCP3 protein – muscles with high proportions of this protein had lower efficiencies than those with low proportions.

“It’s too early to say whether UCP3 causes this difference, or whether it is a marker of some other process, but further research might someday lead to training strategies that will help us improve efficiency, or identify subjects who have the potential to become more efficient over time,” says lead author Martin Mogensen.

“The work is an excellent example of integrative physiology, addressing questions both at the sub-cellular and whole body levels that have implications for basic muscle energetics as well as athletic performance,” says Professor Edward Coyle, of the University of Texas at Austin, in an accompanying editorial.

Lucy Mansfield | alfa
Further information:
http://www.blackwellpublishing.com/tjp

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>