Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Davis study with mice links thimerosal with immune system dysfunction

22.03.2006


A team of cell biologists, toxicologists and molecular bioscientists at UC Davis has published a study connecting thimerosal with disruptions in antigen-presenting cells known as dendritic cells obtained from mice. The study provides the first evidence that dendritic cells show unprecedented sensitivity to thimerosal, resulting in fundamental changes in the immune system’s ability to respond to external factors. The study was published online today and will be available in the July print edition of Environmental Health Perspectives, the peer-reviewed scientific publication of the National Institute of Environmental Health Sciences.



"This is the first time that thimerosal has been shown to selectively alter the normal functions of dendritic cells," said Isaac Pessah, a toxicologist with the UC Davis School of Veterinary Medicine, director of the Children’s Center for Environmental Health and Disease Prevention and senior author of the study. "Dendritic cells play pivotal roles in overcoming viral and bacterial invaders by coordinating the immune system’s overall combat response." One dendritic cell can activate as many as 300 T-cells – white blood cells that help find and kill external agents that attack the immune system – making them the most effective immune system activators.

The study shows how intricate connections between calcium channels in dendritic cells change when exposed to thimerosal.


"The slightest fluctuation in how calcium channels ’communicate’ can alter the growth, maturation and activation of dendritic cells," explained Pessah. "Thimerosal dramatically alters how two key calcium channels, code-named RyR1 and IP3R1, found in dendritic cells function as a team by ’garbling’ the normal signaling system between them."

When thimerosal, at a concentration as low as 20 parts per billion, alters the fidelity of normal calcium signals, dendritic cells show abnormal secretion of IL-6 cytokine – a potent chemical signal that initiates inflammatory responses. Higher concentrations – 200 parts per billion – causes programmed death of dendritic cells, preventing them from maturing and doing their primary job of activating T-cells. Without proper feedback to guide its response, a normal dendritic cell can quickly become "a rogue, producing misinformation that could activate aberrant and harmful immune responses," Pessah explained. "Even one rogue dendritic cell can activate many inappropriate immune responses."

The research team conducted the study on cells cultured from a strain of mouse not particularly susceptible to immune dysregulation. Using fluorescent stains and powerful microscopes to study both immature and mature dendritic cells from bone marrow cultured under normal physiological conditions, the researchers discovered that extremely small levels of thimerosal interfere significantly with calcium channel function after just a few minutes of exposure. They also observed that immature dendritic cells are particularly sensitive to thimerosal.

Thimerosal is a cheap and effective mercury-based preservative. Its potential effects on embryonic neuron development led to its removal from many pediatric vaccines. However, it is still used in influenza, diphtheria and tetanus vaccines, blood products and many over-the-counter pharmaceuticals. The concentrations of thimerosal used by the UC Davis researchers were comparable to those attained in childhood vaccinations containing the preservative.

Researchers and parents have previously proposed links between childhood vaccines and autism, a neurodevelopmental disorder that affects language skills and social interactions. The UC Davis study indicates that in addition to being a direct neurotoxicant, thimerosal may also be an immunotoxicant, leaving the immune system vulnerable to microbes and other external influences.

"Our findings do not directly implicate thimerosal as a single causative agent for triggering neurodevelopmental disorders such as autism," Pessah said. "There is growing evidence that autism is several disorders that we now refer to as just one. There is also growing evidence that some children with autism have unique immune cell composition and responses to antigens. The results of our work provide a framework to test the hypothesis that the genetic background of some individuals may render them especially susceptible to thimerosal."

Other experts also advise drawing no final conclusions regarding thimerosal and autism based on these outcomes.

"These findings should be interpreted cautiously. Although they suggest that thimerosal may affect dendritic cell function, the pathophysiological consequences of thimerosal remain unclear," said David A. Schwartz, a physician and director of the National Institute of Environmental Health Sciences.

Since cell functions can differ across organisms, Pessah will next study dendritic cells isolated from the blood of children with and without autism to confirm if the intercellular changes are the same in humans. The initial mouse study was funded by the National Institute of Environmental Health Sciences and the UC Davis M.I.N.D. Institute. Joining Pessah on the scientific team were molecular bioscientists Samuel R. Goth, Ruth A. Chu and Gennady Cherednichenko and pathologist Jeffrey P. Gregg.

Karen Finney | EurekAlert!
Further information:
http://www.ucdmc.ucdavis.edu
http://www.ehponline.org/docs/2006/8881/abstract.html
http://www.mindinstitute.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>