Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rutgers researchers find fat gene

21.03.2006


Rutgers researchers have identified a gene – and the molecular function of its protein product – that provides an important clue to further understanding obesity and may point the way to new drugs to control fat metabolism.



The scientists found that the human protein known as lipin is a key fat-regulating enzyme. "Lipin activity may be an important pharmaceutical target for the control of body fat in humans, treating conditions that range from obesity to the loss of fat beneath the skin, as seen in HIV patients, " said George M. Carman, a professor in Rutgers’ department of food science.

In a paper published online by the Journal of Biological Chemistry (print version, April 7), Carman and his research team at Rutgers’ Cook College describe their scientific detective work, moving from clue to clue in a series of logical connections to reach their discoveries.


Previous studies with mice showed that a lack of lipin causes a loss of body fat, whereas an excess of lipin promotes extra body fat. So researchers knew that lipin was involved in fat metabolism; they just didn’t know how.

The Carman team’s first revelation came with the discovery that lipin is an enzyme (phosphatidic acid phosphatase or PAP), a protein catalyst that is required for the formation of fats – triglycerides, specifically.

The breakthrough for Carman’s group grew out of work with ordinary baker’s yeast; a simple single cell organism. "We isolated the PAP enzyme from yeast that corresponds in form to lipin in mammals and showed that yeast cells lacking the enzyme exhibited a 90 percent reduction in the yeast’s version of fat loss," Carman said.

The group worked out the sequence of the amino acids that make up the PAP enzyme, allowing them to backtrack along the path to its origin – the gene that coded it – linking the enzyme to the yeast gene PAH1 that made it. Carman and his group went on to confirm the link by introducing the yeast gene into bacteria, with similar results.

The researchers showed that the enzyme encoded by the PAH1 gene looks and acts very much like the lipin found in mammals. The yeast PAP enzyme shares a high resemblance to the lipin protein in mammals so they logically deduced the link between PAP enzyme function and lipin.

"These findings are of major importance to the AIDS community as well as to those concerned with the obesity epidemic," said Jean Chin, a program director at the National Institute of General Medical Sciences (NIGMS), the part of the National Institutes of Health that funded the research. Carman’s research is also supported by the New Jersey Agricultural Experiment Station.

Obesity in the United States has risen at an epidemic rate during the past 20 years, a condition affecting about one-third of American adults, according to the Centers for Disease Control and Prevention. One of the national health objectives for the year 2010 is to reduce the prevalence of obesity among adults to less than 15 percent.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>