Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Project takes fish collection into the digital age

21.03.2006


Novel application of MRI leads to new tools for online dissection of preserved fishes



The same medical technology used to image brain tumors and torn knee ligaments is now taking the field of marine biology to a new dimension: anyone with Internet access will be able to look at fish as never before.

The National Science Foundation (NSF) has awarded researchers at the University of California at San Diego’s (UCSD) Keck Center for Functional Magnetic Resonance Imaging (fMRI) and Scripps Institution of Oceanography a grant to use magnetic resonance imaging (MRI) to create a high-resolution, 3-dimensional, online catalog of fishes.


"This project will augment the existing Scripps Marine Vertebrate Collection by using a new tool and a new way to present information about fishes," said collection curator Philip Hastings. "It’s part of our general effort to make the collection more available to a wider audience."

UCSD School of Medicine’s Lawrence Frank, who leads the biomedical applications program at the Keck fMRI Center, will direct the project. He said the undertaking will further push development of MRI technology for unique applications in humans as well as other species.

"This project also shows the growing role of cutting-edge imaging and computer technologies in increasing our access to information about not only marine biology, but biodiversity and global ecology as well," said Frank.

The five-year, $2.5 million Digital Fish Library project will support development and application of new MRI technology that, in conjunction with novel data analysis and visualization methods, penetrates soft body tissue to provide 3-D images of physiological structures.

"The project uses digital imaging technology to open the inner workings of vertebrate fish without destroying precious specimens," said Manfred Zorn, program director in NSF’s Division of Biological Infrastructure, which funded the project. "It will also open the collection to researchers around the world, who will be able to access images via the internet."

The plan is to image the internal anatomies of the entire range of fishes, said Hastings. "Capturing the variation across all fishes will open the door to a range of interesting questions about how species differ. You can imagine comparing the brain of a coral-reef fish that relies on vision with one from the deep sea that relies mainly on smell, or comparing the muscles of deep-sea fishes that regularly migrate to the surface with those that stay in the deep."

This variation is part of the challenge, as standard MRI is designed to image the anatomy of humans, who slide inside large cylindrical "coils" that capture data that is then processed to create detailed computer images.

"Fish come in a variety of odd shapes, so we have to develop new hardware to image them," said Frank. "Engineers at the center are building special coils for fish. We are also working on new ways of collecting data, because fish tissue can be very different from the tissues we typically image. By tailoring the technology, we will further optimize our use of MRI, whether we’re imaging cardiac muscle, brain tissue, cartilage or fish."

The technology will enable researchers to acquire and process high-resolution data of various fish anatomies that can be placed on the Internet. Using this powerful and versatile imaging tool, scientists, students and anyone in the public will be able to digitally probe and dissect these fishes from a desktop computer anywhere in the world.

Scripps’ Marine Vertebrate, or "Fish," Collection, is among the largest and most comprehensive collections of its kind, containing 90 percent of all known families of fishes. With more than 2 million specimens, the collection is used by researchers around the world to investigate the systematics, biodiversity, physiology, ecology and conservation of fishes. Through the Digital Fish Library project, coordinators will image at least one of every 482 fish families in the world.

Project coordinators will create a resource that allows scientists to remotely study the world’s fish species, from the exotic to the mundane. In collaboration with the Birch Aquarium at Scripps, the scientists will also develop the "Digital Dissection Tool," an educational program for high-school students that capitalizes on the interactive scientific research aspects of the project.

"By creating the Digital Fish Library, we’re developing a tool that stimulates students to think independently and naturally leads them into questions they might want to investigate," Frank said. "We hope to design an educational model that spurs students’ interests and teaches them how to conduct research. It’s not just teaching them about fish anatomy or physiology; it’s teaching them about magnetic resonance imaging, computation and visualization."

Education modules within the Digital Dissection Tool will cover the basics of MRI, digital image processing of 3-D MRI data as well as aspects of marine biology. Under the guidance of co-investigator Cheryl Peach of the Birch Aquarium, elements of the project also will be incorporated into UCSD’s Academic Connections Program, an intensive, three-week summer learning experience for college-bound high-school students.

Hastings said virtual dissections will help preserve fish specimens, unlike traditional, physical dissections that often destroy them. That is even more important with rare specimens. In a global environment in which marine species are being threatened by overfishing, pollution, climate warming and other risks, such resources have become increasingly important, he said.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

Scientists track ovarian cancers to site of origin: Fallopian tubes

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>