Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tasting maple syrup, for science

20.03.2006


Forget about buckets. Most maple syrup is now made with an assortment of machines and tubes so complex that some sugarmakers call their final product “technosyrup.” Chat with a few of them, boiling sap one evening, and you’re likely to hear debate about reverse osmosis sap extractors, “steam-away” units and air injectors. They’ll all agree that today’s maple syrup is produced more quickly than it was a generation ago, and many will argue that the new devices produce a syrup finer in quality — that’s just as pungently delicious as ever.



But is it?

Tim Perkins, director of UVM’s Proctor Maple Research Center in Underhill Center, has decided to find out. This week, he and his staff will start boiling sap at a new research building to test exactly what effect new technologies have on the chemistry, flavor and quality of maple syrup.


“This is the only such facility in the world,” Perkins says. “Nobody since the 1940s has done these kinds of experiments, and the industry has changed a lot since then.”

Pointing to two gleaming evaporators that look like undersized subway cars, Mark Isselhardt ’98, one of Perkins’s maple technicians, explains the method: “The only way to find out what’s going on is to run side-by-side tests.” Above his head, on a loft, a large stainless steel trough waits for the season’s first sap run.

“Each evaporator will be fed from this one source,” he says, looking up, and then traces a line through the air showing where the sweet water will flow through glass dairy pipes into the 10-foot-long machines. Inside, the sap will boil down, monitored by probes that will measure temperature at six points.

“The two evaporators are identical except that one will have an air kit and one won’t,” says Isselhardt. Air injectors are intended to produce a lighter, finer-grade syrup — long the goal of skilled syrup makers. But how does this additional air — bubbled into the hot sap to lower the boiling temperature — affect the final product? Collecting data on the path from tree to mouth will give Perkins and his team a detailed portrait of each batch of syrup. Controlling the variables along the way will allow them to discover whether glowing anecdotes about these injectors are supported by hard-nosed science.

Tasting and smelling the product

And maple syrup science really is a nose — and mouth — science. The technical term is organoleptic. “Which means you put it in your mouth and taste it,” says Perkins, smiling. “We get people who know the flavor of maple syrup, and off-flavors, and they try each one.” Laboratory tests using gas chromatography provide a breakdown of the many compounds in the syrup, which supplements the tastebud approach. “These air injectors appear to make the syrup lighter,” Perkins says. “The real question is: how do they impact the flavor?”

Maple syrup is a natural product, but it is not simple. The interplay of seasonal tree biology, boiling temperature, microorganisms, sugar chemistry, storage time, final container — and a long list of other subtleties — makes each glinting amber-to-chocolate bottle nearly as distinct as varieties of wine. “Syrup is not just concentrated sap,” Perkins says, describing how the sugar in the water is broken from sucrose into glucose and fructose, darkened by bacteria, and carmelized by heat.

This new facility will allow Perkins and other researchers to conduct experiments on up to four evaporators simultaneously. With funding from the USDA, his research over the next two years will focus on air injectors with raw sap. “Then we’ll move on to air injectors with reverse osmosis systems,” he says. “Eventually we’ll build up a body of knowledge about how various mixes of equipment affect the quality and chemistry of maple syrup.”

A history of maple research

Maple research began at UVM in the 1890s, and the Proctor Maple Research Center was established in 1946 with the donation of an old hill farm to UVM by Governor Mortimer Proctor. It’s one of three maple research stations in the world, along with Cornell’s and the Centre Acer in Quebec. The Proctor Center’s main laboratory was established in 1988 and expanded in 1994, and has received ongoing support from Senators Leahy and Jeffords.

The new cedar-shingled shed — “its not a sugarhouse,” Isselhardt says, “it’s a research processing facility” — is directly across the dirt driveway from the lab. With a price tag of about $100,000, it was built with funds from the Proctor Center’s endowment fund, established by UVM in 1999, and contributions from individuals, maple-related companies, and several maple associations, including the Vermont Maple Sugar Makers’ Association, the North American Maple Syrup Council, and the Chittenden County Maple Sugarmakers’ Association.

“We work with all sorts of people in the maple industry,” Perkins says, “and listen to their concerns and questions.” Including some head-scratching about strange changes in the marketplace. “For years, the art of sugarmaking has been to make syrup lighter and lighter. But there is a growing disjunct between the consumer world and the producers,” Perkins says with a sigh. “Many people now prefer the dark, strong tasting syrups, while the sugarmakers keep after the fancy grade.”

By providing objective data about the chemistry of maple syrup, Perkins expects this new research facility will help producers make sense of new tools and new tastes in an old art.

Joshua Brown | EurekAlert!
Further information:
http://www.uvm.edu

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>