Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue chemical-analysis method promises fast results

20.03.2006


Researchers at Purdue have created a miniature mass spectrometer that promises to have applications in everything from airport security to medical diagnostics. Pictured here is the latest prototype, the Mini 10 portable mass spectrometer, which is roughly the size of a shoebox and can easily be carried with one hand. The instrument is 13.5 inches long by 8.5 inches wide by 7.5 inches tall and weighs 10 kilograms (22 pounds), compared to about 30 times that weight for a conventional mass spectrometer. It also can run on battery power. (Purdue News Service photo/David Umberger)


Researchers at Purdue University have shown how a new ultra-fast chemical-analysis tool has numerous promising uses for detecting everything from cancer in the liver to explosives residues on luggage and "biomarkers" in urine that provide an early warning for diseases.

The analytical chemists have most recently demonstrated how the technology, called desorption electrospray ionization, or DESI, rapidly detects the boundaries of cancerous tumors, information that could help ensure that surgeons remove the entire tumor.

"I wouldn’t be surprised if pathologists are using this in operating rooms within two years," said R. Graham Cooks, the Henry Bohn Hass Distinguished Professor of Analytical Chemistry in Purdue’s College of Science.



The technology has made it possible to speed up and simplify the use of a mass spectrometer, an analytical device that in its conventional form has been long established in modern laboratories. But while ordinary mass spectrometry is both time- and labor-intensive, the Purdue group has modified the technology to make it faster, more versatile and more portable.

"The theme in our lab is ’Don’t mess with chemicals,’ meaning we don’t undertake the usual chemical separations and manipulations needed for conventional mass spectrometry," said Cooks, who has developed a wandlike probe that can quickly gather chemical information from samples in the environment.

A review paper about DESI and related techniques, which enable the direct chemical analysis of objects in an ordinary environment, will appear in the Friday (March 17) issue of the journal Science. The paper was written by Cooks, associate research scientist Zheng Ouyang, visiting scholar Zoltán Takáts and doctoral student Justin Wiseman, all in Purdue’s Department of Chemistry. Several technical papers have been published about DESI experiments since the method was announced by the same laboratory in Science less than two years ago, but the new Science paper provides the first overall review of DESI and related techniques.

Mass spectrometry works by first turning molecules into ions, or electrically charged versions of themselves, which can be detected and analyzed.

"Having a charge enables you to not only detect molecules but also to measure their masses, which you can’t do with neutral molecules," Cooks said.

Conventional mass spectrometers analyze samples that are specially prepared and placed in a vacuum chamber. The key DESI innovation is performing the ionization step in the air or directly on surfaces outside of the mass spectrometer’s vacuum chamber.

In addition to DESI, Cooks’ research group has designed and built a portable instrument that is roughly the size of a shoebox and weighs about 10 kilograms (22 pounds), compared to about 30 times that weight for a conventional mass spectrometer. The lightweight instrument can run on batteries, which means it can be carried anywhere. The focus of the Science paper, however, is the ionization method.

The procedure involves spraying water in the presence of an electric field, causing water molecules to become positively charged "hydronium ions," which contain an extra proton. When the positively charged droplets hit the surface of the sample being tested, the hydronium ions transfer their extra proton to molecules in the sample, turning them into ions. The ionized molecules are then vacuumed through a tube and into the mass spectrometer, where the masses of the ions are measured and the material analyzed.

DESI has been used to accurately detect cancer in human livers and pinpoint the boundaries of tumors. The researchers used the device to analyze slices of liver and other tissues removed in biopsies.

"We can show that there are differences in the profiles of chemicals that come from the tissue, and these tissue profiles can be used to diagnose a particular disease or determine how far the disease has progressed," Wiseman said. "We reported in a previous paper, and it is highlighted in the current article, that there are differences in profiles of chemical species from the tissue, indicating a diseased area and also the margin at which that diseased area is separated from the non-diseased area of the tissue."

The traditional assessment method now used in operating rooms is based on the trained eye of a pathologist, who views stained tissue slices under a microscope. The assessment is used to help determine which tissue to remove during surgery.

"In this traditional approach, there is no chemical information being transferred in any way, " Wiseman said.

DESI promises to be an important "high-throughput" tool to collect large amounts of data used in "metabolomics," a field in which researchers search for chemical compounds called biomarkers. These biomarkers are early warnings of disease, but they can be difficult to spot among the hundreds of distinct chemicals normally present in the urine, blood or serum of healthy people. The DESI experiment allows testing to be done without separating the compounds of interest from biological fluids, Cooks said.

"For example, we can place a small drop of urine on filter paper and then test the samples, recording a mass spectrum, which gives all the components of the urine," Cooks said. "Then we identify the individual components in another quick step.

"This two-step procedure, which is known as tandem mass spectrometry, allows us to rapidly confirm the presence of hundreds of components in a urine sample. If, for example, you were conducting medical research with animals and you were studying mouse urine samples, all the mice with a certain disease would show certain compounds in their urine - biomarkers - that signal that particular disease state, and the collection of those biomarkers together would represent a common feature of a particular disease."

Currently, metabolomics is carried out using a technique called nuclear magnetic resonance. DESI, however, could be used to more quickly and accurately analyze a person’s urine for the presence of diseases revealed by biomarkers, Cooks said.

The researchers also have used DESI to detect residues from explosives, and the paper includes a table showing various explosives the scientists have detected with DESI.

"We really don’t know of any explosives that we can’t detect," Wiseman said.

Cooks’ team is associated with several research centers at, or affiliated with, Purdue, including the Bindley Bioscience Center, the Indiana Instrumentation Institute, Inproteo LLC (formerly the Indiana Proteomics Consortium) and the Center for Sensing Science and Technology. Much of the research funding was provided by the National Science Foundation, Office of Naval Research and by Inproteo and Prosolia Inc., through the Indiana 21st Century Research and Technology Fund.

DESI is being commercialized by Inproteo and Prosolia, a spin-off subsidiary of Inproteo, which has been shipping DESI products since November and is adding scientific staff, said Prosolia’s chairman Peter Kissinger.

DESI will continue to evolve at the Bindley Bioscience Center, located at Purdue’s Discovery Park, the university’s hub for interdisciplinary research.

"This technology shows great promise for the life sciences as well as environmental, forensic and homeland security applications," Kissinger said. "This is one of a long series of mass spectrometry innovations coming from the Cooks laboratory. We now have quite a number of mass spectrometry assets on the ground in Indiana, and we are ready to nurture this in the state."

Emil Venere | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>