Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Botulism Toxin’s Insidious Route into Nerve Cells

17.03.2006


Botulinum neurotoxin A can be either the greatest wrinkle remover or one of the world’s most potent biological weapons. To perform either job, however, the toxin must first find a way to enter cells.



But understanding how the toxin — one of seven neurotoxins produced by the bacterium Clostridium botulinum — enters nerve cells has proved elusive for scientists. Despite a decade-long search for the receptor by labs around the world, researchers had come up empty handed.

Now, a research team led by Howard Hughes Medical Institute (HHMI) researcher Edwin R. Chapman reports that it has identified the cellular receptor for botulinum neurotoxin A. The group’s work was published in the March 16, 2006, edition of ScienceXpress, which provides electronic publication of selected Science papers in advance of print. The finding offers important new insights that suggest how the toxin shuts down nerve cells with deadly efficiency.


In the clinic, the toxin, which is also known as botox, is used to treat forehead wrinkles, migraine headaches, urinary retention, eye muscle disorders, and excessive sweating. The same toxin also has more nefarious uses, and is considered a potential bioterror threat because it can kill people by paralyzing motor nerves in diaphragm muscles, causing breathing to stop. Lack of knowledge about the identity of the cell surface receptor that botulism toxin A uses to invade nerve cells has hindered the development of new antidotes to the toxin.

“People thought that since these were the most potent toxins known to humans, it would be easy to find the receptors,” said Chapman, whose HHMI laboratory is at the University of Wisconsin-Madison. However, only a handful of proteins had been identified that appeared to interact with the toxin. But none of these proteins turned out to be the receptor, he said.

According to Chapman, researchers had long known how botulinum neurotoxin A attacks the nerve cell’s internal molecular machinery. But the identity of the neuronal surface protein that the toxin recognized and used to gain entry into the cell was unknown.

“We decided to study the entry route used by these toxins first,” said Chapman. Using cultured neurons and mouse diaphragms as model systems, postdoctoral fellow Min Dong and Felix Yeh in Chapman’s laboratory, revealed that the neurotoxin enters neurons when empty synaptic vesicles are being recycled from the cell surface to the cell’s interior. Synaptic vesicles are sac-like cargo carriers in neurons that haul neurotransmitters from the cell’s interior to the synapses, which are the junctions between neurons. At the synapse, neurotransmitters are released, triggering nerve impulse in neighboring neurons.

“Our uptake experiments with all the toxins showing that many of them are taken up through synaptic vesicles made our life simple, because almost all synaptic vesicle proteins had already been identified by our colleagues. Furthermore, there are only a handful of synaptic vesicle proteins that contain domains that are exposed on the cell surface,” said Chapman.

Thus, when Dong and Yeh screened the major vesicle proteins for binding to the neurotoxin, they found a high level of specific binding to one called SV2. Furthermore, the researchers found they could block the toxin’s action in neurons by adding the piece of the SV2 protein that they had discovered was the SV2 protein’s binding site to the toxin.

The researchers then proceeded to study the interaction between the toxin and SV2 in cell cultures, tissues and in whole mice. Co-author Roger Janz of the University of Texas-Houston Medical School supplied the Wisconsin researchers with knockout mice that lacked certain versions of SV2. The Wisconsin group found that the neurons that lack SV2 do not take up botox, but they do take up the toxin when SV2 is expressed. These findings demonstrated that SV2 is the functional receptor for Botox, Chapman said.

Other key mouse experiments were done in the laboratory of co-authors Eric Johnson and William Tepp in the Food Research Institute at the University of Wisconsin. They found that mice engineered to lack versions of the SV2 protein showed significantly longer survival times than did normal mice when exposed to the toxin.

The identification of SV2 as the neurotoxin A receptor raises the possibility of designing protective drugs that would interfere with the toxin’s action, said Chapman. He said his laboratory will aid such efforts by concentrating on developing a more detailed understanding of the molecular interaction between the toxin and its receptor.

Chapman said that this finding and others’ studies on the botulinum neurotoxins have revealed why they are models of lethal efficiency. “The cool thing is that the neurotoxin receptor is on actively recycling synaptic vesicles, so the toxin targets only active neurons and shuts them down,” he said. “There is no wasted toxin, because once a nerve terminal is shut down, it doesn’t take up any more toxin. That leaves more toxin around to enter nerve terminals that have yet to be inhibited. That’s pretty clever.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>