Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Botulism Toxin’s Insidious Route into Nerve Cells

17.03.2006


Botulinum neurotoxin A can be either the greatest wrinkle remover or one of the world’s most potent biological weapons. To perform either job, however, the toxin must first find a way to enter cells.



But understanding how the toxin — one of seven neurotoxins produced by the bacterium Clostridium botulinum — enters nerve cells has proved elusive for scientists. Despite a decade-long search for the receptor by labs around the world, researchers had come up empty handed.

Now, a research team led by Howard Hughes Medical Institute (HHMI) researcher Edwin R. Chapman reports that it has identified the cellular receptor for botulinum neurotoxin A. The group’s work was published in the March 16, 2006, edition of ScienceXpress, which provides electronic publication of selected Science papers in advance of print. The finding offers important new insights that suggest how the toxin shuts down nerve cells with deadly efficiency.


In the clinic, the toxin, which is also known as botox, is used to treat forehead wrinkles, migraine headaches, urinary retention, eye muscle disorders, and excessive sweating. The same toxin also has more nefarious uses, and is considered a potential bioterror threat because it can kill people by paralyzing motor nerves in diaphragm muscles, causing breathing to stop. Lack of knowledge about the identity of the cell surface receptor that botulism toxin A uses to invade nerve cells has hindered the development of new antidotes to the toxin.

“People thought that since these were the most potent toxins known to humans, it would be easy to find the receptors,” said Chapman, whose HHMI laboratory is at the University of Wisconsin-Madison. However, only a handful of proteins had been identified that appeared to interact with the toxin. But none of these proteins turned out to be the receptor, he said.

According to Chapman, researchers had long known how botulinum neurotoxin A attacks the nerve cell’s internal molecular machinery. But the identity of the neuronal surface protein that the toxin recognized and used to gain entry into the cell was unknown.

“We decided to study the entry route used by these toxins first,” said Chapman. Using cultured neurons and mouse diaphragms as model systems, postdoctoral fellow Min Dong and Felix Yeh in Chapman’s laboratory, revealed that the neurotoxin enters neurons when empty synaptic vesicles are being recycled from the cell surface to the cell’s interior. Synaptic vesicles are sac-like cargo carriers in neurons that haul neurotransmitters from the cell’s interior to the synapses, which are the junctions between neurons. At the synapse, neurotransmitters are released, triggering nerve impulse in neighboring neurons.

“Our uptake experiments with all the toxins showing that many of them are taken up through synaptic vesicles made our life simple, because almost all synaptic vesicle proteins had already been identified by our colleagues. Furthermore, there are only a handful of synaptic vesicle proteins that contain domains that are exposed on the cell surface,” said Chapman.

Thus, when Dong and Yeh screened the major vesicle proteins for binding to the neurotoxin, they found a high level of specific binding to one called SV2. Furthermore, the researchers found they could block the toxin’s action in neurons by adding the piece of the SV2 protein that they had discovered was the SV2 protein’s binding site to the toxin.

The researchers then proceeded to study the interaction between the toxin and SV2 in cell cultures, tissues and in whole mice. Co-author Roger Janz of the University of Texas-Houston Medical School supplied the Wisconsin researchers with knockout mice that lacked certain versions of SV2. The Wisconsin group found that the neurons that lack SV2 do not take up botox, but they do take up the toxin when SV2 is expressed. These findings demonstrated that SV2 is the functional receptor for Botox, Chapman said.

Other key mouse experiments were done in the laboratory of co-authors Eric Johnson and William Tepp in the Food Research Institute at the University of Wisconsin. They found that mice engineered to lack versions of the SV2 protein showed significantly longer survival times than did normal mice when exposed to the toxin.

The identification of SV2 as the neurotoxin A receptor raises the possibility of designing protective drugs that would interfere with the toxin’s action, said Chapman. He said his laboratory will aid such efforts by concentrating on developing a more detailed understanding of the molecular interaction between the toxin and its receptor.

Chapman said that this finding and others’ studies on the botulinum neurotoxins have revealed why they are models of lethal efficiency. “The cool thing is that the neurotoxin receptor is on actively recycling synaptic vesicles, so the toxin targets only active neurons and shuts them down,” he said. “There is no wasted toxin, because once a nerve terminal is shut down, it doesn’t take up any more toxin. That leaves more toxin around to enter nerve terminals that have yet to be inhibited. That’s pretty clever.”

Jim Keeley | EurekAlert!
Further information:
http://www.hhmi.org

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>