Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Strawberries by design


Researchers at the Virginia Bioinformatics Institute (VBI) and the Department of Horticulture in the College of Agriculture and Life Sciences at Virginia Tech have developed a new procedure for the efficient transfer of specific DNA sequences into the genome of strawberry. The scientists have used Agrobacterium tumefaciens, nature’s genetic engineer, to introduce DNA into the woodland or alpine strawberry Fragaria vesca.

The method takes advantage of Agrobacterium’s circular DNA molecule (T-DNA) to deliver DNA to the plant. By helping researchers establish the function of large numbers of strawberry genes, this method could, in the long term, be extremely useful in enhancing the nutritional value of these plants as well as the amount of health-enhancing antioxidants that they may contain.

Jerzy Nowak, professor and head of the Department of Horticulture at Virginia Tech, commented: "Over the years, scientists have worked hard to find a system that would enable the efficient transformation of strawberry. However, these efforts have fallen short of the requirements to support large-scale studies of gene function in fruit crops." He added: "What sets this work apart is the concerted approach adopted by the researchers to combine different parameters that boost the efficiency by which foreign DNA is introduced into this economically important crop."

Herb S. Aldwinckle, professor in the Department of Plant Pathology at Cornell University, Geneva, New York, who has developed highly efficient techniques for transforming apple, remarked: "The commercial strawberry familiar to most consumers is octoploid, which means that it contains eight sets of chromosomes. By using a close relative that has two sets of chromosomes and a significantly smaller genome, the researchers have found a particular type of alpine strawberry that is very amenable to transformation." He added: "The transformation rate achieved is the result of innovation and great attention to experimental detail."

Due to the small size of its genome, short reproductive cycle and small plant size, F. vesca is an ideal model system for genomics in commercial strawberry. The rapid growth of new shoots, the high number of seeds generated and the ease in which new plants may be established, make this plant an ideal candidate as a platform for large-scale studies to elucidate gene function.

The new protocol involves taking strawberry plant tissue from its original site and transferring it to an artificial medium for growth or maintenance. Here unfolded leaves, known as trifoliate leaves, are able to grow. When collected at 6-7 weeks after seed germination, these leaves are highly amenable to gene transfer using A. tumefaciens. Since they glow green under fluorescent light due to the presence of Green Fluorescent Protein (GFP), transformed strawberry plants may be easily identified by visual inspection. This is the first time that GFP has been used in strawberry as a visually selectable marker.

Commenting on the research, VBI Professor Vladimir Shulaev, one of the authors of the study, remarked: "The development of this protocol for strawberry represents a key milestone for researchers interested in improving strawberry and other fruit crops through genomics." He added: "We are now in a position to generate a collection of mutants that will serve as an invaluable tool not only for discovering new genes in the Rosaceae family but also for establishing the functions of these genes through high-throughput screening methods."

Barry Whyte | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

Don't Give the Slightest Chance to Toxic Elements in Medicinal Products

23.03.2018 | Life Sciences

Sensitive grip

23.03.2018 | Materials Sciences

No compromises: Combining the benefits of 3D printing and casting

23.03.2018 | Process Engineering

Science & Research
Overview of more VideoLinks >>>