Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Strawberries by design


Researchers at the Virginia Bioinformatics Institute (VBI) and the Department of Horticulture in the College of Agriculture and Life Sciences at Virginia Tech have developed a new procedure for the efficient transfer of specific DNA sequences into the genome of strawberry. The scientists have used Agrobacterium tumefaciens, nature’s genetic engineer, to introduce DNA into the woodland or alpine strawberry Fragaria vesca.

The method takes advantage of Agrobacterium’s circular DNA molecule (T-DNA) to deliver DNA to the plant. By helping researchers establish the function of large numbers of strawberry genes, this method could, in the long term, be extremely useful in enhancing the nutritional value of these plants as well as the amount of health-enhancing antioxidants that they may contain.

Jerzy Nowak, professor and head of the Department of Horticulture at Virginia Tech, commented: "Over the years, scientists have worked hard to find a system that would enable the efficient transformation of strawberry. However, these efforts have fallen short of the requirements to support large-scale studies of gene function in fruit crops." He added: "What sets this work apart is the concerted approach adopted by the researchers to combine different parameters that boost the efficiency by which foreign DNA is introduced into this economically important crop."

Herb S. Aldwinckle, professor in the Department of Plant Pathology at Cornell University, Geneva, New York, who has developed highly efficient techniques for transforming apple, remarked: "The commercial strawberry familiar to most consumers is octoploid, which means that it contains eight sets of chromosomes. By using a close relative that has two sets of chromosomes and a significantly smaller genome, the researchers have found a particular type of alpine strawberry that is very amenable to transformation." He added: "The transformation rate achieved is the result of innovation and great attention to experimental detail."

Due to the small size of its genome, short reproductive cycle and small plant size, F. vesca is an ideal model system for genomics in commercial strawberry. The rapid growth of new shoots, the high number of seeds generated and the ease in which new plants may be established, make this plant an ideal candidate as a platform for large-scale studies to elucidate gene function.

The new protocol involves taking strawberry plant tissue from its original site and transferring it to an artificial medium for growth or maintenance. Here unfolded leaves, known as trifoliate leaves, are able to grow. When collected at 6-7 weeks after seed germination, these leaves are highly amenable to gene transfer using A. tumefaciens. Since they glow green under fluorescent light due to the presence of Green Fluorescent Protein (GFP), transformed strawberry plants may be easily identified by visual inspection. This is the first time that GFP has been used in strawberry as a visually selectable marker.

Commenting on the research, VBI Professor Vladimir Shulaev, one of the authors of the study, remarked: "The development of this protocol for strawberry represents a key milestone for researchers interested in improving strawberry and other fruit crops through genomics." He added: "We are now in a position to generate a collection of mutants that will serve as an invaluable tool not only for discovering new genes in the Rosaceae family but also for establishing the functions of these genes through high-throughput screening methods."

Barry Whyte | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>