Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strawberries by design

14.03.2006


Researchers at the Virginia Bioinformatics Institute (VBI) and the Department of Horticulture in the College of Agriculture and Life Sciences at Virginia Tech have developed a new procedure for the efficient transfer of specific DNA sequences into the genome of strawberry. The scientists have used Agrobacterium tumefaciens, nature’s genetic engineer, to introduce DNA into the woodland or alpine strawberry Fragaria vesca.



The method takes advantage of Agrobacterium’s circular DNA molecule (T-DNA) to deliver DNA to the plant. By helping researchers establish the function of large numbers of strawberry genes, this method could, in the long term, be extremely useful in enhancing the nutritional value of these plants as well as the amount of health-enhancing antioxidants that they may contain.

Jerzy Nowak, professor and head of the Department of Horticulture at Virginia Tech, commented: "Over the years, scientists have worked hard to find a system that would enable the efficient transformation of strawberry. However, these efforts have fallen short of the requirements to support large-scale studies of gene function in fruit crops." He added: "What sets this work apart is the concerted approach adopted by the researchers to combine different parameters that boost the efficiency by which foreign DNA is introduced into this economically important crop."


Herb S. Aldwinckle, professor in the Department of Plant Pathology at Cornell University, Geneva, New York, who has developed highly efficient techniques for transforming apple, remarked: "The commercial strawberry familiar to most consumers is octoploid, which means that it contains eight sets of chromosomes. By using a close relative that has two sets of chromosomes and a significantly smaller genome, the researchers have found a particular type of alpine strawberry that is very amenable to transformation." He added: "The transformation rate achieved is the result of innovation and great attention to experimental detail."

Due to the small size of its genome, short reproductive cycle and small plant size, F. vesca is an ideal model system for genomics in commercial strawberry. The rapid growth of new shoots, the high number of seeds generated and the ease in which new plants may be established, make this plant an ideal candidate as a platform for large-scale studies to elucidate gene function.

The new protocol involves taking strawberry plant tissue from its original site and transferring it to an artificial medium for growth or maintenance. Here unfolded leaves, known as trifoliate leaves, are able to grow. When collected at 6-7 weeks after seed germination, these leaves are highly amenable to gene transfer using A. tumefaciens. Since they glow green under fluorescent light due to the presence of Green Fluorescent Protein (GFP), transformed strawberry plants may be easily identified by visual inspection. This is the first time that GFP has been used in strawberry as a visually selectable marker.

Commenting on the research, VBI Professor Vladimir Shulaev, one of the authors of the study, remarked: "The development of this protocol for strawberry represents a key milestone for researchers interested in improving strawberry and other fruit crops through genomics." He added: "We are now in a position to generate a collection of mutants that will serve as an invaluable tool not only for discovering new genes in the Rosaceae family but also for establishing the functions of these genes through high-throughput screening methods."

Barry Whyte | EurekAlert!
Further information:
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00425-005-0170-3
http://www.vbi.vt.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>