Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When is an ant like a bicycle?

30.10.2001


Little and large ants cooperate to carry a scorpion leg
© N.R. Franks


Army ants team little with large to lift heavy loads.

If you can’t see the point of the miniature back wheel on a penny-farthing bicycle, try riding a unicycle or watch an ant colony. Ants have realized that, to carry a heavy load, two supports are better than one - even if they seem comically mismatched.

When army ants partner up to carry a lump of food too big for a single ant to transport, an unusually large worker ant takes the front, and an unusually small one, the back, Nigel Franks of the University of Bristol, UK, and his colleagues have found1. Two such ants can carry a load heavier than the sum of their individual abilities.



An ant duo is like a penny-farthing, says Franks, because the big front provides power and steers. The small rear shifts the centre of gravity to between the two ends, making the whole system much more stable.

This is another example of how social insects rely on the colony to pass on genes that drive them to evolve sophisticated cooperation, explains evolutionary biologist Francis Ratnieks of the University of Sheffield, UK. Teamwork makes the most of the colony’s workforce.

Ants’ specialized division of labour is like that in a football team, says Ratnieks. "You can’t just choose 11 players at random, and the centre forward can’t play in goal."

There are other big/small collaborations in insect societies, says Ratnieks. Such squads defend the nests of the European ant Pheidole pallidula against intruders from other colonies of the same species. "A lot of little ants hold the intruder down, and a big one comes along and chops its head off," he says.

Team building

Rainforest army ants send out raiding parties of up to a quarter of a million individuals. These devour just about every invertebrate in their path, cutting them into chunks if necessary, and carting them back to the temporary nest. Franks and his colleagues found penny-farthing duos in the Central American Eciton burchelli and the smaller African Dorylus wilverthi.

How big and little ants team up is a mystery. Army ant lines move at a constant rate; an ant struggling with a lump of meat bigger than it can manage might attract helpers by causing traffic congestion.

When the researchers remove a team and put their food load back among the ants they see "a mêlée of workers, almost like a rugby scrum", according to Franks. "Then - bang - the perfect team emerges, which weighs almost exactly the same as the first team," he reports.

Ant alliances aren’t permanent. "They’re more like pick-up teams," says Franks. They break up and do something else rather than go around looking for another piece of food equally well suited to their capabilities as a couple.

References
  1. Franks, N. R., Sendova-Franks, A. B. & Anderson, C. Division of labout within teams of New World and Old World army ants. Animal Behaviour, 62, 635 - 642, (2001).


JOHN WHITFIELD | Nature News Service
Further information:
http://www.nature.com/nsu/011101/011101-6.html
http://www.nature.com/nsu/

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>