Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Worm hormone discovery may aid fight against parasitic disease

13.03.2006


New research at UT Southwestern Medical Center shows that on a biochemical level, hormone-like molecules in tiny worms called nematodes work similarly to the way in which certain hormones work in humans — findings that one day may help eradicate worm infections that afflict a third of the world’s population.



UT Southwestern researchers have discovered a molecule that activates genes involved in the development and reproduction of Caenorhabditis elegans, a common research worm about the size of a pinhead.

In a study available online and appearing in the March 24 issue of the journal Cell, UT Southwestern scientists describe how the molecule, called a ligand, acts like a hormone, the first such hormonal ligand identified in C. elegans.


Like a key fitting into a lock, the newfound ligand binds to a protein in the cell’s nucleus called a nuclear receptor, a receptor designated DAF-12. Once that binding occurs, DAF-12 activates other genes that allow the worm to develop through its normal stages, reach maturity and reproduce.

When the researchers blocked that hormonal signal by engineering mutant worms that couldn’t manufacture the ligand, however, the mutants’ development stopped before they reached maturity. Instead, the worms went into a "resting" stage called the dauer diapause, in which they don’t eat or reproduce. When the researchers provided the mutants with the missing ligand, it prevented the dauer stage, and the animals continued to develop normally.

"This pathway in worms is remarkably similar to hormonal pathways in humans," said Dr. David Mangelsdorf, chairman of pharmacology at UT Southwestern and senior author of the study.

The experiments by Dr. Mangelsdorf’s team are related to how hormone-replacement therapy works in humans. For example, in patients with Addison’s disease, the adrenal glands do not produce enough of the steroids cortisol and aldosterone; in some cases, these glands produce none at all. Replacing the missing hormones through replacement therapy can relieve the symptoms of the disease, much as providing the missing ligand to the worms restored their normality.

"The conservation of this pathway is remarkable," said Dr. Mangelsdorf, an investigator in UT Southwestern’s Howard Hughes Medical Institute (HHMI). "This line of investigation has been much sought-after in terms of how the DAF-12 protein works and whether it had a hormonal regulator. Mother Nature has used this system from the very simplest nematode worms up to humans, not only employing the same types of proteins to do the job, but also the same types of hormones."

The dauer diapause occurs naturally in C. elegans when the worm senses from its environment that conditions are not favorable for maturing, such as when food is scarce. Dr. Mangelsdorf said cholesterol and other signals derived from the worm’s food source are required to launch the series of biochemical events leading to the production of the hormonal ligand and continued development. Without these environmental signals and the ligand to activate DAF-12, the worm’s life remains suspended.

The UT Southwestern research also may aid in the fight against human disease because the dauer diapause stage of C. elegans is very similar to the infective state of parasitic nematodes. According to the World Health Organization, such parasites infect about 2 billion people worldwide and severely sicken some 300 million, at least 50 percent of whom are school-age children.

In the infective state, parasitic nematodes, such as hookworms, remain in a larval, "resting" stage until they enter the human body, where they eventually migrate to the intestine and begin to mature. Dr. Mangelsdorf is investigating whether the homologue of DAF-12 in parasitic nematodes may regulate their maturing activity as well. If so, he said, the same pathway could be exploited to eradicate the pests, either by keeping them perpetually in an immature state, or by coaxing them to mature before a food source is available.

Other UT Southwestern authors on the paper are lead author Daniel L. Motola, an M.D./Ph.D. student in the Medical Scientist Training Program; Dr. Carolyn Cummins, a research fellow in pharmacology and an HHMI research associate; Dr. Kamalesh Sharma, a postdoctoral fellow in internal medicine; Tingting Li, student research assistant in pharmacology; and Dr. Richard J. Auchus, associate professor of internal medicine. Other authors were from Baylor College of Medicine and the Van Andel Research Institute in Michigan.

The research was funded by HHMI, the Welch Foundation, the National Institutes of Health, the Jay and Betty Van Andel Foundation, the Department of Defense and the Glenn/AFAR Breakthroughs in Gerontology.

Amanda Siegfried | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>