Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hamster study shows how our brains recognize other individuals

09.03.2006


Imagine seeing a former high school classmate you always wanted to know better. Then imagine seeing that kid who used to push you in the hallways. Do you react differently? What happens in your brain during these encounters?



In fact, different areas of the brain react differently when recognizing others, depending on the emotions attached to the memory, a team of Cornell University research psychologists has found. The team, led by professor of psychology Robert Johnston, has been conducting experiments to study individual recognition.

But rather than crash high school reunions with an MRI machine in tow, the researchers stayed in their laboratory and created social encounters between golden hamsters. Then they examined the animals’ brains for evidence of those encounters.


Last year Johnston’s team conducted the first experiment to demonstrate the neural basis of individual recognition in hamsters and identify which areas of the brain play a role. The results were published in the Dec. 7, 2005, issue of the Journal of Neuroscience.

Better understanding these mechanisms, Johnston said, may be of central importance in treating certain forms of autism, Asperger syndrome, psychopathy and social anxiety disorders.

"This ability to recognize individuals underlies social behavior in virtually all vertebrates and some invertebrates as well," explained Johnston. "Humans clearly have an incredible ability to recognize, remember and store huge amounts of information about individuals -- even individuals we have never actually met. This ability is the core of circuits that one might call the social brain."

Johnston’s team uses hamsters to study recognition because their brains are strikingly similar to ours. "They are more sophisticated than you might think," he noted.

In the latest experiment, a male hamster encountered two individuals that he knew equally well but had different interactions with the previous day: a male that defeated him in a fight and a male that he had never fought. The encounters mimicked those that occur in the wild.

The hamster fled from the winning male but was attracted to the neutral male -- suggesting that he both recognized the individuals and remembered his experiences with them.

An hour later, the researchers removed the hamster’s breath-mint-sized brain and injected it with antibodies and enzymes. The antibodies bond to specific proteins produced by recently active brain cells, and the enzymes convert chemicals in the cells into colored dyes, leaving behind a map of where the action was. This technique, called immunohistochemistry, is also used to diagnose cancerous cells in humans.

Next the brain was frozen with dry ice, shaved into very thin slices using a miniature slow-moving guillotine and then studied under a microscope to determine where the dyes were activated.

"Functional MRIs provide similar information from human brains, but those images are relatively fuzzy and lack the spatial resolution necessary for small animals," explained Johnston. "With immunohistochemistry, on the other hand, we can see each individual cell that was activated."

The researchers found activity in the brain’s anterior dorsal hippocampus and amygdala, among other areas. They then repeated the experiment with another hamster whose anterior dorsal hippocampus was numbed with lidocaine, a local anesthetic, and found that the animal did not avoid the individual who had defeated him.

"It showed us that this region is necessary for recognition memory," said Johnston. "The hippocampus has also been implicated for recognition memory in humans."

Although hamsters recognize individuals by smell, whereas humans use largely sight and sound, Johnston said that the underlying mechanism is the same. The other authors of the Neuroscience article are first author and former Cornell graduate student Wen-Sung Lai ’03, graduate student Leora Ramiro and former undergraduate Helena Yu ’03. The National Institute of Mental Health supported the research.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>