Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hamster study shows how our brains recognize other individuals


Imagine seeing a former high school classmate you always wanted to know better. Then imagine seeing that kid who used to push you in the hallways. Do you react differently? What happens in your brain during these encounters?

In fact, different areas of the brain react differently when recognizing others, depending on the emotions attached to the memory, a team of Cornell University research psychologists has found. The team, led by professor of psychology Robert Johnston, has been conducting experiments to study individual recognition.

But rather than crash high school reunions with an MRI machine in tow, the researchers stayed in their laboratory and created social encounters between golden hamsters. Then they examined the animals’ brains for evidence of those encounters.

Last year Johnston’s team conducted the first experiment to demonstrate the neural basis of individual recognition in hamsters and identify which areas of the brain play a role. The results were published in the Dec. 7, 2005, issue of the Journal of Neuroscience.

Better understanding these mechanisms, Johnston said, may be of central importance in treating certain forms of autism, Asperger syndrome, psychopathy and social anxiety disorders.

"This ability to recognize individuals underlies social behavior in virtually all vertebrates and some invertebrates as well," explained Johnston. "Humans clearly have an incredible ability to recognize, remember and store huge amounts of information about individuals -- even individuals we have never actually met. This ability is the core of circuits that one might call the social brain."

Johnston’s team uses hamsters to study recognition because their brains are strikingly similar to ours. "They are more sophisticated than you might think," he noted.

In the latest experiment, a male hamster encountered two individuals that he knew equally well but had different interactions with the previous day: a male that defeated him in a fight and a male that he had never fought. The encounters mimicked those that occur in the wild.

The hamster fled from the winning male but was attracted to the neutral male -- suggesting that he both recognized the individuals and remembered his experiences with them.

An hour later, the researchers removed the hamster’s breath-mint-sized brain and injected it with antibodies and enzymes. The antibodies bond to specific proteins produced by recently active brain cells, and the enzymes convert chemicals in the cells into colored dyes, leaving behind a map of where the action was. This technique, called immunohistochemistry, is also used to diagnose cancerous cells in humans.

Next the brain was frozen with dry ice, shaved into very thin slices using a miniature slow-moving guillotine and then studied under a microscope to determine where the dyes were activated.

"Functional MRIs provide similar information from human brains, but those images are relatively fuzzy and lack the spatial resolution necessary for small animals," explained Johnston. "With immunohistochemistry, on the other hand, we can see each individual cell that was activated."

The researchers found activity in the brain’s anterior dorsal hippocampus and amygdala, among other areas. They then repeated the experiment with another hamster whose anterior dorsal hippocampus was numbed with lidocaine, a local anesthetic, and found that the animal did not avoid the individual who had defeated him.

"It showed us that this region is necessary for recognition memory," said Johnston. "The hippocampus has also been implicated for recognition memory in humans."

Although hamsters recognize individuals by smell, whereas humans use largely sight and sound, Johnston said that the underlying mechanism is the same. The other authors of the Neuroscience article are first author and former Cornell graduate student Wen-Sung Lai ’03, graduate student Leora Ramiro and former undergraduate Helena Yu ’03. The National Institute of Mental Health supported the research.

Blaine Friedlander | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>