Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hamster study shows how our brains recognize other individuals

09.03.2006


Imagine seeing a former high school classmate you always wanted to know better. Then imagine seeing that kid who used to push you in the hallways. Do you react differently? What happens in your brain during these encounters?



In fact, different areas of the brain react differently when recognizing others, depending on the emotions attached to the memory, a team of Cornell University research psychologists has found. The team, led by professor of psychology Robert Johnston, has been conducting experiments to study individual recognition.

But rather than crash high school reunions with an MRI machine in tow, the researchers stayed in their laboratory and created social encounters between golden hamsters. Then they examined the animals’ brains for evidence of those encounters.


Last year Johnston’s team conducted the first experiment to demonstrate the neural basis of individual recognition in hamsters and identify which areas of the brain play a role. The results were published in the Dec. 7, 2005, issue of the Journal of Neuroscience.

Better understanding these mechanisms, Johnston said, may be of central importance in treating certain forms of autism, Asperger syndrome, psychopathy and social anxiety disorders.

"This ability to recognize individuals underlies social behavior in virtually all vertebrates and some invertebrates as well," explained Johnston. "Humans clearly have an incredible ability to recognize, remember and store huge amounts of information about individuals -- even individuals we have never actually met. This ability is the core of circuits that one might call the social brain."

Johnston’s team uses hamsters to study recognition because their brains are strikingly similar to ours. "They are more sophisticated than you might think," he noted.

In the latest experiment, a male hamster encountered two individuals that he knew equally well but had different interactions with the previous day: a male that defeated him in a fight and a male that he had never fought. The encounters mimicked those that occur in the wild.

The hamster fled from the winning male but was attracted to the neutral male -- suggesting that he both recognized the individuals and remembered his experiences with them.

An hour later, the researchers removed the hamster’s breath-mint-sized brain and injected it with antibodies and enzymes. The antibodies bond to specific proteins produced by recently active brain cells, and the enzymes convert chemicals in the cells into colored dyes, leaving behind a map of where the action was. This technique, called immunohistochemistry, is also used to diagnose cancerous cells in humans.

Next the brain was frozen with dry ice, shaved into very thin slices using a miniature slow-moving guillotine and then studied under a microscope to determine where the dyes were activated.

"Functional MRIs provide similar information from human brains, but those images are relatively fuzzy and lack the spatial resolution necessary for small animals," explained Johnston. "With immunohistochemistry, on the other hand, we can see each individual cell that was activated."

The researchers found activity in the brain’s anterior dorsal hippocampus and amygdala, among other areas. They then repeated the experiment with another hamster whose anterior dorsal hippocampus was numbed with lidocaine, a local anesthetic, and found that the animal did not avoid the individual who had defeated him.

"It showed us that this region is necessary for recognition memory," said Johnston. "The hippocampus has also been implicated for recognition memory in humans."

Although hamsters recognize individuals by smell, whereas humans use largely sight and sound, Johnston said that the underlying mechanism is the same. The other authors of the Neuroscience article are first author and former Cornell graduate student Wen-Sung Lai ’03, graduate student Leora Ramiro and former undergraduate Helena Yu ’03. The National Institute of Mental Health supported the research.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>