Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mice with glowing hearts shed light on living cells

09.03.2006


There is the heart of gold, and then there is the heart that glows. Literally.


Provided by Kotlikoff et al.
This series reveals increases in cell calcium from a mouse embryo’s upper heart through the lower heart on day 10 of development. Cell calcium rises when muscles contract. The bottom row shows a dramatic slowing of the conducted calcium wave between the upper and lower heart chambers.



Cornell researchers have genetically engineered mice whose hearts glow with a green light every time they beat. The development gives researchers insights into how hearts develop in living mouse embryos and could improve our understanding of irregular heartbeats, known as arrhythmias, as well as open doors to observing cellular processes to better understand basic physiology and disease.

The technique for making living, functional cells fluoresce, or glow, when the concentration of calcium ions rise within cells, is described online at http://www.pnas.org/papbyrecent.shtml and is to be published in a future issue of Proceedings of the National Academy of Sciences.


"The proteins act as molecular spies that tell us what is happening within cells in the living mouse," said Michael Kotlikoff, professor and chair of the Department of Biomedical Sciences at Cornell’s College of Veterinary Medicine.

Cornell researchers are breeding new lines of mice with similar proteins that target neurons in the brain, in parasympathetic nerves, in blood vessels or in Purkinje fibers, which prompt the heart’s ventricles to pump. The researchers have also transplanted cells from the mice with glowing hearts into normal mice to see whether the transplanted cells function normally within the host heart, which could offer insights for heart repair.

In the study, the mouse was engineered to express a specially designed molecule that fluoresces when calcium, which increases dramatically with each muscle contraction, is released in heart cells. Co-author Junichi Nakai of the RIKEN Brain Science Institute in Wako-shi, Japan, developed the fluorescent molecule by modifying a green fluorescent protein (derived from bioluminescent jellyfish) and making it glow brightly enough to be observed in the working heart.

Calcium turns the sensor molecule off and on like a molecular switch. Greater fluorescence indicates higher calcium levels, and the sensor shows the patterns, rate and force of heart contractions.

Since the mouse heart beats approximately 6 to 10 times per second, imaging requires a special high-speed camera that is cooled to minus 90 degrees Celsius (minus 128 Fahrenheit), reducing "noise" for a sharper image. Co-author Guy Salama of the University of Pittsburgh contributed the optical imaging work.

Using this technique, the researchers were able to track the embryo’s developing heart to glean insights into how the heart forms. In mammals, the heart is the first organ to function and starts beating prior to its full development.

"We knew that the heart starts to pump at around 9.5 days," said Kotlikoff. By day 10.5, there are only two chambers (rather than four chambers in an adult mammal): an atrium on top and a ventricle on the bottom. A delay in beats between the two gives the atrium time to contract and push blood through the heart, but the mechanism that controls that signal, the atrio-ventricular node (AV node), doesn’t develop until day 13. Nobody knew how the heart coordinated the pumping without this key component.

"We knew there had to be a delay in this, but we had no idea how it occurred," said Kotlikoff.

Using the new technique, which tracks the rise of calcium as the heart muscle contracts, the researchers discovered a layer of specialized cells on the surface of the developing heart that delays the beating between the upper to lower parts of the heart. After 13.5 days of development, the two portions of the heart separate into four, and there is a functional AV node. By that time, the technique revealed, the specialized cells have died so that functions are not duplicated.

"These cells have to die, because if they didn’t the heart would not function properly," said Kotlikoff.

The study was funded by the National Institutes of Health and Japan’s Ministry of Education, Culture, Sports Science and Technology.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>