Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most human-chimp differences due to gene regulation – not genes

09.03.2006


The vast differences between humans and chimpanzees are due more to changes in gene regulation than differences in individual genes themselves, researchers from Yale, the University of Chicago, and the Hall Institute in Parkville, Victoria, Australia, argue in the 9 March 2006 issue of the journal Nature.



The scientists provide powerful new evidence for a 30-year-old theory, proposed in a classic paper from Mary-Claire King and Allan Wilson of Berkeley. That 1975 paper documented the 99-percent similarity of genes from humans and chimps and suggested that altered gene regulation, rather than changes in coding, might explain how so few genetic changes could produce the wide anatomic and behavioral differences between the two.

Using novel gene-array technology to measure the extent of gene expression in thousands of genes simultaneously, this study shows that as humans diverged from their ape ancestors in the last five million years, genes for transcription factors -- which control the expression of other genes -- were four times as likely to have changed their own expression patterns as the genes they regulate.


Because they influence the activity of many "downstream" genetic targets, small changes in the expression of these regulatory genes can have an enormous impact.

"When we looked at gene expression, we found fairly small changes in 65 million years of the macaque, orangutan, and chimpanzee evolution," said study author Yoav Gilad, Ph.D., assistant professor of human genetics at the University of Chicago, "followed by rapid change, along the five million years of the human lineage, that was concentrated on these specific groups of genes. This rapid evolution in transcription factors occurred only in humans."

"For 30 years scientists have suspected that gene regulation has played a central role in human evolution," said Kevin White, Ph.D., associate professor of genetics and ecology and evolution at Yale and senior author of the study. "In addition to lending support to the idea that changes in gene regulation are a key part of our evolutionary history, these new results help to define exactly which regulatory factors may be important, at least in certain tissues. This helps open the door to a functional dissection of the role of gene regulation during the evolution of modern humans."

To measure changes in gene expression from different species, White and Gilad developed the first multi-species gene array. This allowed them to compare the level of expression of more than 1,000 genes between humans, chimps, orangutans and rhesus macaques – representing about 70 million years of evolution. To make the samples comparable, the researchers studied tissue from the liver -- one of the most homogeneous sources -- from five adult males from each of the four species.

They focused their search on expression levels of two sets of genes, those that remained largely unchanged across all four species, suggesting that there was little room -- or need -- for improvement, and those that changed most dramatically, usually in the human lineage -- an indication of powerful incentives to adapt to a changing environment.

Of the 1,056 genes from all four species, 60 percent had fairly consistent expression levels across all four species. "The expression levels of these genes seem to have remained constant for about 70 million years," the authors wrote, "suggesting that their regulation is under evolutionary constraint."

Many of these genes are involved in basic cellular processes. The authors suggest that altering the regulation of these fundamental and ancient genes may be harmful. In fact, five of the 100 most stable genes have altered expression levels in liver cancer.

When they also looked for human genes with significantly higher or lower expression levels, they found 14 genes with increased expression and five with decreased expression. While only ten percent of the genes in the total array were transcription factors, 42 percent of those with increased expression in humans were. None of those with lower expression were transcription factors. This pattern, the authors note, is consistent with "directional selection."

Previous studies have found that many of these same genes have also evolved rapidly in humans, accumulating changes in their coding sequence as well as in expression rates. "Together," they add, "these findings raise the possibility that the function and regulation of transcription factors have been substantially modified in the human lineage."

This is a very efficient way to make big changes with very little effort, according to Gilad. By altering transcription factors, the entire regulatory network can change with very few mutations, increasing the impact and minimizing the risk.

"The big question," he said, "is why are humans so different? What sort of changes in the environment or lifestyle would drive such a rapid shift in the expression of genes -- in this case in the liver -- in humans and in no other primate?"

Part of the answer, he suspects, is rapid alterations in diet, probably related to the acquisition of fire and the emerging preference for cooked food. "No other animal relies on cooked food," he said. "Perhaps something in the cooking process altered the biochemical requirements for maximal access to nutrients as well as the need to process the natural toxins found in plant and animal foods."

This is just the first of a series of similar studies, said Gilad, that will look at changes in gene expression over evolutionary time. The next steps are to look at larger arrays of genes and to focus on other tissue types.

John Easton | EurekAlert!
Further information:
http://www.uchospitals.edu

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>