Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis research into reparative cells offers new avenue for fighting disease

02.03.2006


Plaques that form around the nerve cells of people with multiple sclerosis are apparently what disable people with the disease. But partly developed reparative cells within the plaques provide hope for a treatment, a UT Southwestern physician reports in the New England Journal of Medicine.



Dr. Elliot Frohman, professor of neurology and ophthalmology, is lead author on an overview of MS. It is the first time in five years that Journal editors have had researchers provide an overview of the debilitating disease.

Presently, the primary focus of research is on plaques, which are now known to contain certain predictable features consistent with tissue injury, such as loss of nerve insulation, scarring, inflammation and loss of the ability of nerves to transmit electrical and chemical information to other nerves.


"Recognizing these different injury cascades has catalyzed novel investigations into strategies for treatment that are aimed at promoting preservation of tissue architecture (neuroprotection) and even potentially neurorestoration," said Dr. Frohman, who directs the Multiple Sclerosis Program and Clinical Center at UT Southwestern and holds the Irene Wadel and Robert I. Atha Distinguished Chair in Neurology and the Kenney Marie Dixon-Pickens Distinguished Professorship in Multiple Sclerosis Research.

MS is an autoimmune disease in which the body attacks its own tissues and afflicts about 400,000 Americans and 2.5 million people worldwide. People with the disease develop problems with coordination and eyesight and, in some cases, lose mental sharpness.

In MS, nerve cells lose their insulating fatty covering, called myelin. Myelin comes from nearby cells called oligodendrocytes, which send out projections that wrap around nerve cells. Myelin allows electrical signals to travel quickly and with high fidelity.

The damaged area becomes surrounded by plaques, which contain a wide variety of cells. Although much of the content of a plaque is harmful to nerves, there are some cells that provide hope, Dr. Frohman said.

Even though the oligodendrocytes are damaged, there exists a reservoir of oligodendrocyte precursor cell, or OPCs, left over from development that could be activated to repair the damage, he said. The problem is how to trigger them to grow.

"Those are progenitor cells that will grow up into mature cells," Dr. Frohman said. "We know more why they don’t grow up."

Proteins called repressor proteins keep the OPCs in an immature state. Activating the OPC, however, might help a severed or demyelinated nerve in the central nervous system become the target for repair.

Treatments for MS are difficult, but researchers are examining the regulation of the genes Nogo, Lingo-1, Jagged and Notch for potential treatment.

The proteins Nogo and Lingo-1 appear to have the ability to block nerve cells from growing, so if they can be blocked, the nerve cells might be able to recover.

"With the advent of new technologies, we have a much better understanding of the events that occur during the MS disease process," said co-author Dr. Michael Racke, professor of neurology and in the Center for Immunology. "In particular, we will see a much greater emphasis on the molecular events that occur during MS and will likely see new strategies to intervene in the disease." Dr. Racke holds the Lois C.A. and Darwin E. Smith Distinguished Chair in Neurological Mobility Research.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>