Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiple sclerosis research into reparative cells offers new avenue for fighting disease

02.03.2006


Plaques that form around the nerve cells of people with multiple sclerosis are apparently what disable people with the disease. But partly developed reparative cells within the plaques provide hope for a treatment, a UT Southwestern physician reports in the New England Journal of Medicine.



Dr. Elliot Frohman, professor of neurology and ophthalmology, is lead author on an overview of MS. It is the first time in five years that Journal editors have had researchers provide an overview of the debilitating disease.

Presently, the primary focus of research is on plaques, which are now known to contain certain predictable features consistent with tissue injury, such as loss of nerve insulation, scarring, inflammation and loss of the ability of nerves to transmit electrical and chemical information to other nerves.


"Recognizing these different injury cascades has catalyzed novel investigations into strategies for treatment that are aimed at promoting preservation of tissue architecture (neuroprotection) and even potentially neurorestoration," said Dr. Frohman, who directs the Multiple Sclerosis Program and Clinical Center at UT Southwestern and holds the Irene Wadel and Robert I. Atha Distinguished Chair in Neurology and the Kenney Marie Dixon-Pickens Distinguished Professorship in Multiple Sclerosis Research.

MS is an autoimmune disease in which the body attacks its own tissues and afflicts about 400,000 Americans and 2.5 million people worldwide. People with the disease develop problems with coordination and eyesight and, in some cases, lose mental sharpness.

In MS, nerve cells lose their insulating fatty covering, called myelin. Myelin comes from nearby cells called oligodendrocytes, which send out projections that wrap around nerve cells. Myelin allows electrical signals to travel quickly and with high fidelity.

The damaged area becomes surrounded by plaques, which contain a wide variety of cells. Although much of the content of a plaque is harmful to nerves, there are some cells that provide hope, Dr. Frohman said.

Even though the oligodendrocytes are damaged, there exists a reservoir of oligodendrocyte precursor cell, or OPCs, left over from development that could be activated to repair the damage, he said. The problem is how to trigger them to grow.

"Those are progenitor cells that will grow up into mature cells," Dr. Frohman said. "We know more why they don’t grow up."

Proteins called repressor proteins keep the OPCs in an immature state. Activating the OPC, however, might help a severed or demyelinated nerve in the central nervous system become the target for repair.

Treatments for MS are difficult, but researchers are examining the regulation of the genes Nogo, Lingo-1, Jagged and Notch for potential treatment.

The proteins Nogo and Lingo-1 appear to have the ability to block nerve cells from growing, so if they can be blocked, the nerve cells might be able to recover.

"With the advent of new technologies, we have a much better understanding of the events that occur during the MS disease process," said co-author Dr. Michael Racke, professor of neurology and in the Center for Immunology. "In particular, we will see a much greater emphasis on the molecular events that occur during MS and will likely see new strategies to intervene in the disease." Dr. Racke holds the Lois C.A. and Darwin E. Smith Distinguished Chair in Neurological Mobility Research.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>