Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbe DNA helps scientists understand ocean

22.02.2006


Using DNA analysis, MIT researchers and colleagues have gained new insight into how marine microbes thrive and survive at different depths of the ocean.

"Microbes are the central processors of matter and energy in almost every ecosystem imaginable - especially so in the sea," said MIT Professor Ed DeLong, who led the work. Thousands of different types of microbes, the world’s smallest creatures, inhabit every cubic centimeter of seawater. They have huge effects on ocean chemistry and possibly even climate.

However, "their complex interactions are really tough to study in natural environments," DeLong said. "We took a shortcut to understanding their environmental activities by analyzing the DNA from whole communities of microbes."



In the Jan. 27 issue of Science, the researchers describe their analysis of DNA from microbe communities at seven different depths in the tropical Pacific Ocean, from the surface down to 4,000 meters (about 13,000 feet). One of the team’s overall goals was to determine how the microbes near the surface are different from those that live thousands of meters down.

The scientists collected water from the open ocean about 100 kilometers (60 miles) north of the island of Oahu. This spot, site of the Hawaii Ocean Time Series station, has been studied continuously for 18 years by one of the co-authors, David Karl of the University of Hawaii. It was chosen because it is far from any terrestrial influences, yet its chemistry and (nonmicrobial) biology are relatively well known.

Still, challenges remained. Because concentrations of microbes were so low in this "oceanic desert" area, the team had to spend five to six hours filtering up to 600 liters (160 gallons) of seawater for each sample to obtain enough microbial DNA for analysis.

What did the researchers find?

Not surprisingly, in samples from the sunlit waters within about 100 meters of the surface, they discovered many microbial DNA sequences that were associated with photosynthesis. This indicates that many microbes in these waters probably use sunlight as a source of energy.

Surface samples also contained microbial DNA associated with movement and propulsion. "This suggests that movement may be especially important for surface-water microbes, perhaps helping them follow chemical gradients or move from food particle to food particle," said DeLong, who has appointments in the Department of Civil and Environmental Engineering (CEE) and in the Biological Engineering Division.

In contrast, DNA from microbes in deeper waters suggests many may survive by attaching to and breaking down particles of organic material. Such particles continually sink down from the surface waters into the deep sea, providing food for many organisms in the form of "marine snow."

Perhaps the most surprising finding was the large amount of DNA that came from viruses, especially in near-surface waters. Since the researchers excluded free-living viruses from their initial sample, they believe that this viral DNA must have come from viruses that had infected living bacteria.

"We’re excited about these new views of microbes we and others are developing by analyzing microbial genomes recovered directly from the environment. The approach is really providing new insight into what makes microbes tick in the real world - how they affect each other and influence their surrounding environment," DeLong said.

DeLong’s colleagues from MIT are Penny Chisholm, the Lee and Geraldine Martin Professor of Environmental Studies in CEE and the Department of Biology; CEE postdoctoral associates Tracy Mincer, Steven Hallam (now at the University of British Columbia), Matthew Sullivan and Niels-Ulrik Frigaard (now at the University of Copenhagen); Virginia Rich, a graduate student in the MIT-Woods Hole Oceanographic Institution Joint Program; and CEE research scientist Asuncion Martinez.

Additional authors of the Science paper are from the Monterey Bay Aquarium Research Institute, the University of Hawaii and San Diego State University.

This work was funded by the Gordon and Betty Moore Foundation, the National Science Foundation, and the U.S. Department of Energy Microbial Genomics Program.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>