Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist uses dragonflies to better understand flight

21.02.2006


If mastering flight is your goal, you can’t do better than to emulate a dragonfly.



With four wings instead of the standard two and an unusual pitching stroke that allows the bug to hover and even shift into reverse, the slender, elegant insect is a marvel of engineering.

Z. Jane Wang, professor of theoretical and applied mechanics at Cornell University, presented her research on flying systems and fluid dynamics today (Feb. 19) at the annual meeting of the American Association for the Advancement of Science. In a seminar "Falling Paper, Dragonfly Flight and Making a Virtual Insect," she said the best way to learn about flight is by first looking at what happens naturally.


Look at how such thin structures as falling paper move through a fluid environment like air, she said, and then examine how insects use their wings to manipulate that environment and stay aloft.

"The major question I focus on is the question of efficiency," Wang said in an interview. "It’s the long-standing question: Of birds and planes, which is better? And if we think planes are better -- why?"

Conventional wisdom holds that airplanes (airfoils) are more efficient because they travel from point to point with no wasted up-and-down motion. "But there are infinitely many ways you can go up and down," said Wang. "Of all these paths, are any better than a straight line? Some are -- that’s what I found."

The insight came from dragonflies.

"Dragonflies have a very odd stroke. It’s an up-and-down stroke instead of a back-and-forth stroke," she said. "Dragonflies are one of the most maneuverable insects, so if they’re doing that they’re probably doing it for a reason. But what’s strange about this is the fact that they’re actually pushing down first in the lift.

"An airfoil uses aerodynamic lift to carry its weight. But the dragonfly uses a lot of aerodynamic drag to carry its weight. That is weird, because with airplanes you always think about minimizing drag. You never think about using drag."

The next question, she said, is whether engineers can use these ideas to build a flapping machine as efficient as a fixed-wing aircraft.

Questions of size and feasibility remain. "To hover well or to fly for a long time is hard, especially at slow speeds," she said. "Power is limited. So finding these efficient motions is very important."

Still, Wang’s work moves researchers a step closer to building such a machine.

"I want to build insects on a computer as a way of learning why almost all things that move in fluid use a flapping motion," said Wang. "Whether it’s a fish which flips its fins or a bird, they’re actually using the same principle.

"The way paper or leaves fall, and how insects fly, may give us some ideas about why animals use these methods at all," she said.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>