Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientist uses dragonflies to better understand flight

21.02.2006


If mastering flight is your goal, you can’t do better than to emulate a dragonfly.



With four wings instead of the standard two and an unusual pitching stroke that allows the bug to hover and even shift into reverse, the slender, elegant insect is a marvel of engineering.

Z. Jane Wang, professor of theoretical and applied mechanics at Cornell University, presented her research on flying systems and fluid dynamics today (Feb. 19) at the annual meeting of the American Association for the Advancement of Science. In a seminar "Falling Paper, Dragonfly Flight and Making a Virtual Insect," she said the best way to learn about flight is by first looking at what happens naturally.


Look at how such thin structures as falling paper move through a fluid environment like air, she said, and then examine how insects use their wings to manipulate that environment and stay aloft.

"The major question I focus on is the question of efficiency," Wang said in an interview. "It’s the long-standing question: Of birds and planes, which is better? And if we think planes are better -- why?"

Conventional wisdom holds that airplanes (airfoils) are more efficient because they travel from point to point with no wasted up-and-down motion. "But there are infinitely many ways you can go up and down," said Wang. "Of all these paths, are any better than a straight line? Some are -- that’s what I found."

The insight came from dragonflies.

"Dragonflies have a very odd stroke. It’s an up-and-down stroke instead of a back-and-forth stroke," she said. "Dragonflies are one of the most maneuverable insects, so if they’re doing that they’re probably doing it for a reason. But what’s strange about this is the fact that they’re actually pushing down first in the lift.

"An airfoil uses aerodynamic lift to carry its weight. But the dragonfly uses a lot of aerodynamic drag to carry its weight. That is weird, because with airplanes you always think about minimizing drag. You never think about using drag."

The next question, she said, is whether engineers can use these ideas to build a flapping machine as efficient as a fixed-wing aircraft.

Questions of size and feasibility remain. "To hover well or to fly for a long time is hard, especially at slow speeds," she said. "Power is limited. So finding these efficient motions is very important."

Still, Wang’s work moves researchers a step closer to building such a machine.

"I want to build insects on a computer as a way of learning why almost all things that move in fluid use a flapping motion," said Wang. "Whether it’s a fish which flips its fins or a bird, they’re actually using the same principle.

"The way paper or leaves fall, and how insects fly, may give us some ideas about why animals use these methods at all," she said.

Blaine Friedlander | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Life Sciences:

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

nachricht Calcium may play a role in the development of Parkinson's disease
19.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>