Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study suggests ’noise’ in gene expression could aid bacterial pathogenicity


Synthetic biology experiment turns up a previously unrecognized gene-expression phenomenon

A high level of variation in the amount of green fluorescence protein in individual non-growing E. coli cells surprised synthetic biology researchers at Boston University and the University of California, San Diego

An experiment designed to show how a usually innocuous bacterium regulates the expression of an unnecessary gene for green color has turned up a previously unrecognized phenomenon that could partially explain a feature of bacterial pathogenicity.

In a paper published in the Feb. 16 issue of Nature, researchers at Boston University (BU) and the University of California, San Diego (UCSD) reported that computer modeling predicted the new phenomenon before they confirmed it in laboratory experiments. The group led by James J. Collins, a biomedical engineering professor at BU, and Jeff Hasty, a bioengineering professor at UCSD, reported that the rise and fall in the amount of green-fluorescence protein in computer modeling matched the pattern recorded in E. coli cells grown in various laboratory conditions.

The researchers were surprised that cell-to-cell variation in the expression of the synthetic gene increased sharply as growth slowed and then stopped. "We were initially skeptical of our own results because they were so counterintuitive," said Collins. "But our laboratory experiments confirmed this increase in gene-expression variability, or noise, when growth stops. We think there may be some very interesting biology to explore in this situation."

Variability in gene expression could offer distinct survival advantages to a bacterium. Like a cruise ship whose life boats have been stocked with different combinations of food, first-aid kits, rain jackets, and flotation devices, a microscopic version of Survivor could occur in which only those individual bacterial cells with opportune combinations of proteins are able to weather harsh growth conditions in a pond or even inside a human body.

"This phenomenon could be relevant to bacterial ’persisters’ - dormant cells that are highly resistant to antibiotics," said Collins. "Many bacterial pathogens can generate these persisters, which over many months can become the source of chronic infections. We don’t understand the how persisters arise, but we think this unexpected gene-expression variability in bacterial cells is an interesting phenomenon that should be explored."

The group of researchers came up with the novel finding by using a relatively new research approach that involves the synthesis of simple gene networks, in this case one that produces a green-fluorescence protein. They measured expression of green fluorescence in a laboratory strain of E. coli under different growth conditions where other genes and proteins could potentially complicate the situation. They incorporated that information into a mathematical model.

The authors say their findings demonstrate the value of a so-called "bottom-up" approach to synthetic biology: models of relatively simple cellular processes can be used to predict the behavior of larger, more complex ones.

"We’re excited by this study because the model itself led to a counterintuitive prediction that was supported by experimentation," said UCSD’s Hasty. "The logical next step is to examine noise in the expression of proteins that would be essential to a bacterium’s survival," Hasty said. "We’ve only begun to get an inkling of how noise in gene expression may be involved in the life of a cell."

Rex Graham | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>