Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study suggests ’noise’ in gene expression could aid bacterial pathogenicity

16.02.2006


Synthetic biology experiment turns up a previously unrecognized gene-expression phenomenon


A high level of variation in the amount of green fluorescence protein in individual non-growing E. coli cells surprised synthetic biology researchers at Boston University and the University of California, San Diego



An experiment designed to show how a usually innocuous bacterium regulates the expression of an unnecessary gene for green color has turned up a previously unrecognized phenomenon that could partially explain a feature of bacterial pathogenicity.

In a paper published in the Feb. 16 issue of Nature, researchers at Boston University (BU) and the University of California, San Diego (UCSD) reported that computer modeling predicted the new phenomenon before they confirmed it in laboratory experiments. The group led by James J. Collins, a biomedical engineering professor at BU, and Jeff Hasty, a bioengineering professor at UCSD, reported that the rise and fall in the amount of green-fluorescence protein in computer modeling matched the pattern recorded in E. coli cells grown in various laboratory conditions.


The researchers were surprised that cell-to-cell variation in the expression of the synthetic gene increased sharply as growth slowed and then stopped. "We were initially skeptical of our own results because they were so counterintuitive," said Collins. "But our laboratory experiments confirmed this increase in gene-expression variability, or noise, when growth stops. We think there may be some very interesting biology to explore in this situation."

Variability in gene expression could offer distinct survival advantages to a bacterium. Like a cruise ship whose life boats have been stocked with different combinations of food, first-aid kits, rain jackets, and flotation devices, a microscopic version of Survivor could occur in which only those individual bacterial cells with opportune combinations of proteins are able to weather harsh growth conditions in a pond or even inside a human body.

"This phenomenon could be relevant to bacterial ’persisters’ - dormant cells that are highly resistant to antibiotics," said Collins. "Many bacterial pathogens can generate these persisters, which over many months can become the source of chronic infections. We don’t understand the how persisters arise, but we think this unexpected gene-expression variability in bacterial cells is an interesting phenomenon that should be explored."

The group of researchers came up with the novel finding by using a relatively new research approach that involves the synthesis of simple gene networks, in this case one that produces a green-fluorescence protein. They measured expression of green fluorescence in a laboratory strain of E. coli under different growth conditions where other genes and proteins could potentially complicate the situation. They incorporated that information into a mathematical model.

The authors say their findings demonstrate the value of a so-called "bottom-up" approach to synthetic biology: models of relatively simple cellular processes can be used to predict the behavior of larger, more complex ones.

"We’re excited by this study because the model itself led to a counterintuitive prediction that was supported by experimentation," said UCSD’s Hasty. "The logical next step is to examine noise in the expression of proteins that would be essential to a bacterium’s survival," Hasty said. "We’ve only begun to get an inkling of how noise in gene expression may be involved in the life of a cell."

Rex Graham | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>