Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists seek to unwrap the sweet mystery of the sugar coat on bacteria

15.02.2006


Scientists at The University of Texas at Austin have developed a quick and simple way to investigate the sugar coating that surrounds bacteria and plays a role in infection and immunity.

The sugars coating bacteria can change very quickly during the course of an infection, cloaking the bacteria from the immune system of their host. Previous techniques for studying the sugars were too slow to catch these rapid changes.

"There’s a growing recognition of the importance of carbohydrates on bacterial cell surfaces," says Dr. Lara Mahal, lead researcher and assistant professor of chemistry and biochemistry with the Institute for Cellular and Molecular Biology. "The carbohydrate coating is critical in how your immune system recognizes bacteria."



Mahal and graduate student Ken Hsu report their findings in the advance on-line edition and March issue of Nature Chemical Biology.

The scientists studied the sugar coats of four strains of bacteria: two lab strains of E. coli, one pathogenic strain of E. coli that causes neonatal meningitis, and Salmonella typhimurium, which causes food poisoning.

They analyzed each strain of bacteria using lectin microarrays--small glass plates covered with dots of sugar-binding proteins called lectins. The lectin dots act like microbe Velcro. Bacteria with a surface sugar that matches a specific lectin stick to that lectin dot. Because the bacteria are fluorescently labeled, Mahal and her colleagues can read the patterns of glowing dots and determine which sugars coat the bacteria.

The microarray technique worked fast enough that the researchers were able to see the sugar coating change over time in the neonatal meningitis strain of E. coli.

"Over time, the lectins lost their ability to see these bacteria," says Mahal. "This demonstrates that our system is able to see a dynamic change in the carbohydrates on bacteria surface over time."

Mahal says the microarray method could provide an important tool for identifying bacteria and diagnosing infection. It will also provide a way for scientists to start asking questions about the role that surface sugars play in bacterial infection and symbiotic relationships.

Lara Mahal | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>