Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A clue to core problem of neurodegenerative disease and cell death

10.02.2006


Misfolded and damaged proteins are common to all human neurodegenerative diseases. Clumps of these aggregated proteins destroy neurons within the brain and cause disease. But explanations for the mechanism that actually causes cell death have varied widely, puzzling scientists and leading them to ask whether Alzheimer’s, Parkinson’s, Huntington’s and Creutzfeldt-Jakob diseases and familial amyotrophic lateral sclerosis (ALS) are related diseases or very different diseases.



Northwestern University scientists now offer a clue that may get to the core of the cell death question and establish a common mechanism in these diseases. In a study to be published online Feb. 9 by the journal Science, the research team shows that polyglutamine (the toxic component of the protein responsible for Huntington’s disease) is so demanding on the cell’s system that it changes the environment within the cell, causing other metastable, or partially folded, proteins to crash and lose function. Over time, this can cause the organism to die.

"Our results suggest that these disease-associated, aggregation-prone proteins may exert their destabilizing effects by interfering generally with other proteins that are having difficulty folding," said Richard I. Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology, who led the study. Morimoto is an expert in Huntington’s disease and on the cellular and molecular response to damaged proteins.


"We found that the system for protein quality control is not robust at all -- it is very delicate," said Morimoto. "Slight changes in the cell’s environment have huge consequences. A single mutant polyglutamine protein interferes with the folding and functioning of very different types of proteins in the cell. This, in turn, could interfere with innumerable cellular processes and offers an explanation of why so many different mechanisms have been proposed for toxicity and cell death."

Morimoto speculates that it could be the misfolded protein’s structure that, indirectly, is causing the other proteins to become non-functional. If so, these findings have implications for all neurodegenerative diseases. For each disease, a single or a small number of mutant proteins have been identified as causing the disease, and studies have shown that the misfolded states of these mutant proteins are all structurally related.

The experiments were conducted in C. elegans, a transparent roundworm whose biochemical environment is similar to that of human beings and whose genome, or complete genetic sequence, is known. The researchers picked seven random and unrelated proteins that are expressed in the same compartment in the cell as mutant polyglutamine. The seven metastable proteins -- each essential to the functioning of muscle, nerve or hypodermal cells -- had a temperature-sensitive mutation: the proteins are fine at normal temperature but when the temperature is elevated the mutation is expressed.

When the researchers introduced the toxic polyglutamine protein, the environment of the cell completely changed. In the case of each of the seven proteins, the presence of the expanded polyglutamine caused each mutation to be expressed at normal temperature. In turn, the metastable protein intensified the aggregation properties of the polyglutamine protein.

"These results could provide a very powerful tool for understanding all the neurodegenerative diseases," said Morimoto. "Do all proteins that cause this class of disease, such as mutant SOD in familial ALS or prions in Creutzfeldt-Jakob disease, have the same consequences? To find out, we plan to do the same experiments using the mutant proteins associated with the other diseases."

"This research suggests that a common mechanism may underlie a variety of protein folding diseases," said James Anderson, a geneticist at the National Institute of General Medical Sciences, at the National Institutes of Health, which partially funded the research. "While the hypothesis needs to be tested in other organisms, findings made in model organisms such as C. elegans are often the first step in understanding the molecular roots of human diseases."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht A room with a view - or how cultural differences matter in room size perception
25.04.2017 | Max-Planck-Institut für biologische Kybernetik

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>