Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A clue to core problem of neurodegenerative disease and cell death

10.02.2006


Misfolded and damaged proteins are common to all human neurodegenerative diseases. Clumps of these aggregated proteins destroy neurons within the brain and cause disease. But explanations for the mechanism that actually causes cell death have varied widely, puzzling scientists and leading them to ask whether Alzheimer’s, Parkinson’s, Huntington’s and Creutzfeldt-Jakob diseases and familial amyotrophic lateral sclerosis (ALS) are related diseases or very different diseases.



Northwestern University scientists now offer a clue that may get to the core of the cell death question and establish a common mechanism in these diseases. In a study to be published online Feb. 9 by the journal Science, the research team shows that polyglutamine (the toxic component of the protein responsible for Huntington’s disease) is so demanding on the cell’s system that it changes the environment within the cell, causing other metastable, or partially folded, proteins to crash and lose function. Over time, this can cause the organism to die.

"Our results suggest that these disease-associated, aggregation-prone proteins may exert their destabilizing effects by interfering generally with other proteins that are having difficulty folding," said Richard I. Morimoto, Bill and Gayle Cook Professor of Biochemistry, Molecular Biology and Cell Biology, who led the study. Morimoto is an expert in Huntington’s disease and on the cellular and molecular response to damaged proteins.


"We found that the system for protein quality control is not robust at all -- it is very delicate," said Morimoto. "Slight changes in the cell’s environment have huge consequences. A single mutant polyglutamine protein interferes with the folding and functioning of very different types of proteins in the cell. This, in turn, could interfere with innumerable cellular processes and offers an explanation of why so many different mechanisms have been proposed for toxicity and cell death."

Morimoto speculates that it could be the misfolded protein’s structure that, indirectly, is causing the other proteins to become non-functional. If so, these findings have implications for all neurodegenerative diseases. For each disease, a single or a small number of mutant proteins have been identified as causing the disease, and studies have shown that the misfolded states of these mutant proteins are all structurally related.

The experiments were conducted in C. elegans, a transparent roundworm whose biochemical environment is similar to that of human beings and whose genome, or complete genetic sequence, is known. The researchers picked seven random and unrelated proteins that are expressed in the same compartment in the cell as mutant polyglutamine. The seven metastable proteins -- each essential to the functioning of muscle, nerve or hypodermal cells -- had a temperature-sensitive mutation: the proteins are fine at normal temperature but when the temperature is elevated the mutation is expressed.

When the researchers introduced the toxic polyglutamine protein, the environment of the cell completely changed. In the case of each of the seven proteins, the presence of the expanded polyglutamine caused each mutation to be expressed at normal temperature. In turn, the metastable protein intensified the aggregation properties of the polyglutamine protein.

"These results could provide a very powerful tool for understanding all the neurodegenerative diseases," said Morimoto. "Do all proteins that cause this class of disease, such as mutant SOD in familial ALS or prions in Creutzfeldt-Jakob disease, have the same consequences? To find out, we plan to do the same experiments using the mutant proteins associated with the other diseases."

"This research suggests that a common mechanism may underlie a variety of protein folding diseases," said James Anderson, a geneticist at the National Institute of General Medical Sciences, at the National Institutes of Health, which partially funded the research. "While the hypothesis needs to be tested in other organisms, findings made in model organisms such as C. elegans are often the first step in understanding the molecular roots of human diseases."

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>