Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Proteins’ subtle ’backrub’ motion could have important implications

09.02.2006


Biochemists have detected a surprising, subtle new gyration that protein molecules undergo in the intricate, squirming dance that influences their activity in the cell. The researchers have also created a realistic geometrical model of the twisting "backrub" motion that could help scientists understand the basics of protein function and design proteins for medical use.



Also, they said, the backrub motion could have implications for understanding how proteins can accommodate locally to some mutations that occur during evolution, without altering their global structure or function.

Understanding the subtleties of protein motion is important because the molecules are central to the machinery of life. For example, protein enzymes catalyze the myriad of chemical reactions that underlie all cell functions. Thus, biologists seek not only to understand the complexities of protein dynamics, but to design and construct manmade proteins as medicines to treat a wide array of diseases.


The Duke University Medical Center biochemists, led by Professors Jane and David Richardson, published their findings in the February 2006 issue of the journal Structure. Lead author on the paper was graduate student Ian Davis, and the other co-author was Bryan Arendall. The research was supported by the National Institutes of Health and a Howard Hughes Medical Institute predoctoral fellowship to Davis.

Proteins comprise strings of amino acids whose links form a "backbone." Each kind of amino acid sprouts a characteristic molecular "side chain," and together the backbone and side chains determine a protein’s structure and function.

The Duke researchers suspected the presence of backrub motions for other reasons, but their reality could be conclusively shown only by studying proteins frozen in crystalline form for structural analysis by x-ray crystallography. In this widely used technique, x-rays are directed through crystals of a protein, and the pattern of diffracted beams is analyzed to deduce its structure. Such data is usually collected at synchrotron x-ray sources, with the crystals cooled by liquid nitrogen to temperatures near -300° Fahrenheit.

"We were pleased but surprised that these crystal structures at liquid nitrogen temperatures actually could show us something really interesting about dynamics," said Jane Richardson.

In the highest resolution such crystal structures, in which individual atoms are directly visible, it is quite common to see a side chain that "dances", or flips back and forth between two different conformations. The researchers traced the consequences of this motion back into the backbone and deduced that the local backbone structure must twist slightly in a particular way to accommodate the larger side-chain movement. According to Richardson, this motion, which they dubbed a "backrub", is a subtle, concerted shift of the two backbone units on either side of the dancing side chain.

"Nobody has described this particular kind of motion before," said Richardson. "And that’s because it’s down in the noise, in terms of what the backbone is doing. You have to get ultra-high-resolution, clean maps that really show you exactly where the side chain atoms are. And then you can work backwards to figure out what the backbone must have done." The researchers created a geometrical "backrub" software tool to model this motion.

"Investigators had theorized that the backbone moved, but it has been rather difficult to prove what’s really going on," said Richardson. "There have been other previous models, but these were not as successful as one would like, presumably because they were not based on the kind of empirical data that we’ve now developed." To understand how frequently the backrub motion occurred in proteins, Davis undertook an analysis of crystallographic data on 19 proteins.

"We took nineteen of the highest-resolution structures available -- the best data we could get our hands on," said Davis. "We then went through each of those structures one residue at a time, looking for evidence of some sort of motion that extended beyond just a side chain spinning."

Davis distinguished backrub motions by detecting movement of the first side chain atom attached to the backbone -- a shift that could only occur if the backbone had moved, said Davis. In analyzing some 4,000 amino acid units, Davis found backrub motion for more than 3 percent of the total and 75 percent of all the local backbone shifts.

"We were expecting to see some examples of this motion, but we were very surprised that it was so dominant over any other very local backbone motions," he said.

The fact that the backbone motions are common in proteins frozen in crystals suggests that they are even more prevalent in proteins in the liquid environment of the cell, said Richardson.

"The backrub motions in these frozen crystals have to be a subset of what goes on in solution or in the body," she said. "It’s got to be more common when you have more flexibility." Such ubiquity means that the backrub model developed by the researchers could have useful applications, said Richardson.

"The backrub model can be used by people doing homology modeling, in which they are starting with a known protein structure and trying to model the structure of a protein with a related but different sequence," she said. "One knows that the backbone will shift in such cases, but previous methods of modeling those shifts have usually produced results farther from reality rather than closer.

"We think our backrub shifts can help predict how, either in natural evolution or in protein engineering, the local structure would accommodate the substitution of an amino acid with a different shape or size of side chain," said Richardson. Such engineering is commonly done in developing altered proteins for medical use. The Richardsons and their colleagues are already working with fellow biochemists who design proteins, to explore how their backrub model can improve design strategies.

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>