Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Drug resistance may travel same path as quorum sensing


The cellular "pumps" associated with multi-drug resistance in bacteria may also be involved in exporting signals responsible for cell-cell communication, a process known as quorum sensing, said researchers from Baylor College of Medicine in a report that appears online today in the Proceedings of the National Academy of Sciences.

"We believe that the drugs exported by these pumps may actually be similar in structure to molecules involved in communicating," said Dr. Lynn Zechiedrich, assistant professor of molecular virology and microbiology at BCM. Thus, the drugs get exported by bacterial cells as if they were the usual communication molecules the cells use to transmit information in a bacterial colony.

While giving a patient a drug starts the process, the bacterial cell is "going down some natural pathway of cell-to-cell communication. It’s trying to communicate, and when it does, it increases the number of the pumps to try to send out the molecules. The doctor is trying to kill the bacterial cells with drugs, but the cells just make more pumps to communicate better. The effect is that they get rid of the drug," said Zechiedrich.

Instead of bacterial pumps sending out the usual communication signals, they send out drug instead – inadvertently blocking the ability of the drug to kill the bacteria. This does not occur because the bacteria "know" that the drugs are going to kill them, but because the drug looks like a communication signal. So the bacterial cells send out what they think is a communication signal, which is bad news for doctors and their patients. This process, known as multidrug resistance, results in the failure to cure the bacterial disease. Even worse, the resistance is not just to one drug, but many because the pump is now increased and many different drugs will be pumped out.

"It compounds the problem," said Zechiedrich. Her findings are a step toward understanding the mystery surrounding drug resistance, she said.

In her work, she found that two of these "pumps" or transporters – AcrAB/TolC and NorE – actually export as yet unidentified signals used in cell-to-cell communication.

Ross Tomlin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>