Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug resistance may travel same path as quorum sensing

08.02.2006


The cellular "pumps" associated with multi-drug resistance in bacteria may also be involved in exporting signals responsible for cell-cell communication, a process known as quorum sensing, said researchers from Baylor College of Medicine in a report that appears online today in the Proceedings of the National Academy of Sciences.



"We believe that the drugs exported by these pumps may actually be similar in structure to molecules involved in communicating," said Dr. Lynn Zechiedrich, assistant professor of molecular virology and microbiology at BCM. Thus, the drugs get exported by bacterial cells as if they were the usual communication molecules the cells use to transmit information in a bacterial colony.

While giving a patient a drug starts the process, the bacterial cell is "going down some natural pathway of cell-to-cell communication. It’s trying to communicate, and when it does, it increases the number of the pumps to try to send out the molecules. The doctor is trying to kill the bacterial cells with drugs, but the cells just make more pumps to communicate better. The effect is that they get rid of the drug," said Zechiedrich.


Instead of bacterial pumps sending out the usual communication signals, they send out drug instead – inadvertently blocking the ability of the drug to kill the bacteria. This does not occur because the bacteria "know" that the drugs are going to kill them, but because the drug looks like a communication signal. So the bacterial cells send out what they think is a communication signal, which is bad news for doctors and their patients. This process, known as multidrug resistance, results in the failure to cure the bacterial disease. Even worse, the resistance is not just to one drug, but many because the pump is now increased and many different drugs will be pumped out.

"It compounds the problem," said Zechiedrich. Her findings are a step toward understanding the mystery surrounding drug resistance, she said.

In her work, she found that two of these "pumps" or transporters – AcrAB/TolC and NorE – actually export as yet unidentified signals used in cell-to-cell communication.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>