Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug resistance may travel same path as quorum sensing

08.02.2006


The cellular "pumps" associated with multi-drug resistance in bacteria may also be involved in exporting signals responsible for cell-cell communication, a process known as quorum sensing, said researchers from Baylor College of Medicine in a report that appears online today in the Proceedings of the National Academy of Sciences.



"We believe that the drugs exported by these pumps may actually be similar in structure to molecules involved in communicating," said Dr. Lynn Zechiedrich, assistant professor of molecular virology and microbiology at BCM. Thus, the drugs get exported by bacterial cells as if they were the usual communication molecules the cells use to transmit information in a bacterial colony.

While giving a patient a drug starts the process, the bacterial cell is "going down some natural pathway of cell-to-cell communication. It’s trying to communicate, and when it does, it increases the number of the pumps to try to send out the molecules. The doctor is trying to kill the bacterial cells with drugs, but the cells just make more pumps to communicate better. The effect is that they get rid of the drug," said Zechiedrich.


Instead of bacterial pumps sending out the usual communication signals, they send out drug instead – inadvertently blocking the ability of the drug to kill the bacteria. This does not occur because the bacteria "know" that the drugs are going to kill them, but because the drug looks like a communication signal. So the bacterial cells send out what they think is a communication signal, which is bad news for doctors and their patients. This process, known as multidrug resistance, results in the failure to cure the bacterial disease. Even worse, the resistance is not just to one drug, but many because the pump is now increased and many different drugs will be pumped out.

"It compounds the problem," said Zechiedrich. Her findings are a step toward understanding the mystery surrounding drug resistance, she said.

In her work, she found that two of these "pumps" or transporters – AcrAB/TolC and NorE – actually export as yet unidentified signals used in cell-to-cell communication.

Ross Tomlin | EurekAlert!
Further information:
http://www.bcm.tmc.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel 3-D printing technique yields high-performance composites

16.01.2018 | Materials Sciences

New application for acoustics helps estimate marine life populations

16.01.2018 | Life Sciences

Fast-tracking T cell therapies with immune-mimicking biomaterials

16.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>