Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Edinburgh scientists identify a key player in making specialised cells from embryonic stem cells


Scientists from the University of Edinburgh have shown that the protein Mbd3 plays a crucial role in the process by which embryonic stem cells become specialised cells, such as brain or skin cells. These findings make significant advances in understanding how embryonic stem cells can be made to become all the different types of cell in the body, ultimately to be used in replacement therapies for specific diseases and injuries. This research is published online this week in the leading scientific journal Nature Cell Biology.

Mouse embryonic stem cells can be directed to become neurons (green) when grown in a dish…

...but when Mbd3 is lacking most cells remain as embryonic stem cells (red).

In the body, stem cells divide to produce both copies of themselves and other, more specialised, cell types. The Edinburgh scientists made mouse embryonic stem cells lacking the Mbd3 protein. Unlike non-engineered cells, the Mbd3-lacking cells failed to form different cell types when induced to do so in a dish, but rather remained in an uncommitted state. When injected into very early mouse embryos, the Mbd3-lacking cells behaved in a similar way, disrupting the normal development of the embryo.

Brian Hendrich, leading the research team, says “It is well established that embryonic stem cells need certain factors to sustainably make copies of themselves, that is, to self-renew. We have now shown, for the first time, that to leave that state and go down the specialisation pathway cells require the activity of Mbd3; it is not enough simply to remove the self-renewal factors. If Mbd3 is absent, the cells remain in an embryonic stem cell-like state”.

These latest findings will also provide insights into some of the crucial differences between mouse and human embryonic stem cells. Mouse embryonic stem cells need the protein LIF to be able to make copies of themselves indefinitely; human embryonic stem cells, on the other hand, do not need LIF to keep multiplying. Mbd3-lacking cells are similar to human embryonic stem cells in that they do not require LIF. They may, therefore, be used as a tool to understand how human embryonic cells bypass the need for LIF when multiplying without limit.

Mbd3 is part of a large complex of proteins called the NuRD (Nucleosome Remodelling and Histone Deacetylation) complex. NuRD is known as an epigenetic silencer, as its role in cells is to turn genes off.

This research was supported by The Wellcome Trust, the MRC and the BBSRC.

Ana Coutinho | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>