Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Edinburgh scientists identify a key player in making specialised cells from embryonic stem cells

08.02.2006


Scientists from the University of Edinburgh have shown that the protein Mbd3 plays a crucial role in the process by which embryonic stem cells become specialised cells, such as brain or skin cells. These findings make significant advances in understanding how embryonic stem cells can be made to become all the different types of cell in the body, ultimately to be used in replacement therapies for specific diseases and injuries. This research is published online this week in the leading scientific journal Nature Cell Biology.


Mouse embryonic stem cells can be directed to become neurons (green) when grown in a dish…


...but when Mbd3 is lacking most cells remain as embryonic stem cells (red).



In the body, stem cells divide to produce both copies of themselves and other, more specialised, cell types. The Edinburgh scientists made mouse embryonic stem cells lacking the Mbd3 protein. Unlike non-engineered cells, the Mbd3-lacking cells failed to form different cell types when induced to do so in a dish, but rather remained in an uncommitted state. When injected into very early mouse embryos, the Mbd3-lacking cells behaved in a similar way, disrupting the normal development of the embryo.

Brian Hendrich, leading the research team, says “It is well established that embryonic stem cells need certain factors to sustainably make copies of themselves, that is, to self-renew. We have now shown, for the first time, that to leave that state and go down the specialisation pathway cells require the activity of Mbd3; it is not enough simply to remove the self-renewal factors. If Mbd3 is absent, the cells remain in an embryonic stem cell-like state”.


These latest findings will also provide insights into some of the crucial differences between mouse and human embryonic stem cells. Mouse embryonic stem cells need the protein LIF to be able to make copies of themselves indefinitely; human embryonic stem cells, on the other hand, do not need LIF to keep multiplying. Mbd3-lacking cells are similar to human embryonic stem cells in that they do not require LIF. They may, therefore, be used as a tool to understand how human embryonic cells bypass the need for LIF when multiplying without limit.

Mbd3 is part of a large complex of proteins called the NuRD (Nucleosome Remodelling and Histone Deacetylation) complex. NuRD is known as an epigenetic silencer, as its role in cells is to turn genes off.

This research was supported by The Wellcome Trust, the MRC and the BBSRC.

Ana Coutinho | alfa
Further information:
http://www.iscr.ed.ac.uk

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>