Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers break chain of biochemical events that brain cancer cells use to evade therapy

07.02.2006


In their quest to find and exploit vulnerabilities in the natural armor that protects malignant brain tumors from destruction, researchers have found a way to decrease the cells¡¦ resistance to therapies that are designed to trigger cell death. The findings resulted from laboratory experiments conducted at Cedars-Sinai Medical Center’s Maxine Dunitz Neurosurgical Institute and are based on the manipulation of a series of intricate biochemical events taking place within brain tumor cells.

"We have described and are exploiting a biochemical pathway to make brain cancers much more sensitive to common therapeutic agents that cause a natural process of cell death called apoptosis," said John S. Yu, M.D., co-director of the Comprehensive Brain Tumor Program at the Institute, adding that the researchers are applying for Food and Drug Administration approval to translate their findings into patient clinical trials as soon as possible.

Although most types of cells can be dismantled and cleared by apoptosis a "programmed" and necessary cell death mechanism gliomas and other cancer cells have genes that enable them to thwart apoptosis and continue to grow unchecked even when subjected to therapies that are designed to initiate or enhance apoptosis.



One such therapy, which Institute researchers have studied and are developing, centers on a protein called TRAIL (tumor necrosis factor related apoptosis inducing ligand). TRAIL has been shown to cause cell death in several types of cancers, with negligible damage to normal cells. The new findings should increase the effectiveness of TRAIL and other agents that trigger a "caspase cascade" a specific biochemical chain reaction resulting in cell death.

In the normal process of apoptosis, the enzymes caspase-8 and caspase-9 activate caspase-3, which initiates cell breakdown, leading to cell death. In gliomas, however, several proteins that modulate these enzymes are overexpressed, resulting in down-regulation (reduction) of enzyme activity. With caspase-3 activation blocked, apoptosis is halted and cancer cells grow uncontrolled.

The Cedars-Sinai researchers theorized that a diabetes drug called troglitazone would limit the effects of the overexpressed proteins, reinstating the caspase activity and the process of apoptosis. In patient trials, pioglitazone will be used instead of troglitazone, which was the ingredient in Rezulin„¥, removed from the market because of safety issues. Pioglitazone acts in cancer cells in the same way as troglitazone, but without the associated liver concerns. Both are in a family of drugs called thiazolidinediones, given in tablet form to patients with Type 2 diabetes to improve cells’ responsiveness to insulin.

Although Yu and his colleagues usually are hesitant to prescribe more than one anti-cancer medication, this appears to be an ideal situation for a two-drug attack.

"When you combine two therapeutic agents, you usually get the toxicity of both, which is additive. But this strategy is different in that we are using a common diabetes drug that does not have the toxicity of a therapeutic agent. We have medications that are designed to induce apoptosis in tumor cells. Now we have a drug that appears to lower thresholds for induction of apoptosis," said Yu, senior author of a paper describing the study in the Journal of Biological Chemistry, published online Nov. 30, 2005. The article is expected to be published in the print version of the journal in late January.

"This study shows that as we begin to dissect the biochemistry of cancer, we can design therapies that interact within the critical pathways that are important for cancers to survive," said Keith L. Black, M.D., director of the Institute and the Division of Neurosurgery at Cedars-Sinai. "One of the things we have learned is that there probably will not be one ultimate pathway in cancer that we can block and be curative. A more likely scenario is that we will need to develop multiple pathways for interaction. The understanding we gain from translating basic research into patient care allows us to build upon what we already know and begin to block additional pathways to make our current therapies more effective."

Sandy Van | EurekAlert!
Further information:
http://www.csmc.edu/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>