Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stable polymer nanotubes may have a biotech future

06.02.2006


This sequence of images taken at NIST shows the creation of a nanotube as a highly focused infrared laser tugs on a polymer membrane that has been colored with a fluorescent dye. The white scale bar indicates 10 micrometers.


Scientists at the National Institute of Standards and Technology (NIST) have created polymer nanotubes that are unusually long (about 1 centimeter) as well as stable enough to maintain their shape indefinitely. Described in a new paper in Proceedings of the National Academy of Sciences,* the NIST nanotubes may have biotechnology applications as channels for tiny volumes of chemicals in nanofluidic reactor devices, for example, or as the "world’s smallest hypodermic needles" for injecting molecules one at a time.

Carbon nanotubes are of keen interest in nanotechnology research, especially for making ultrastrong fibers and other structures. Nanotubes made from other materials are used for transport in biochemical applications, but are typically fragile and usually collapse within a few hours. The NIST team developed processes for extending the shelf life of polymer nanotubes--considered essential for commercial applications--and forming sturdy nanotube network structures.

First the researchers made tiny, fluid-filled spherical containers with bi-layer membranes consisting of polymers with one end that likes water and one end that does not. (These fluid-filled containers are a spin-off of liposomes, artificial cells with fatty membranes used in cosmetics and for drug delivery.) The researchers made the membranes stretchy by adding a soap-like fluid to change the polymer membranes’ mechanical properties. Then they used "optical tweezers" (highly focused infrared lasers) or tiny droppers called micropipettes to pull on the elastic membranes to form long, double-walled tubes that are less than 100 nanometers in diameter. (View a movie of this process at: http://www.nist.gov/public_affairs/images/Polymer_Nanotubes_Animation.htm.)



A chemical was added to break bonds between atoms in one section of the polymers and induce new bonds to form between the two different sections, forming a rigid "cross-linked" membrane. The nanotubes are then snipped free from the parent cell with an "optical scalpel" (highly focused ultraviolet laser pulse). The nanotubes maintain their shape even after several weeks of storage, and can be removed from the liquid solution and placed on a dry surface or in a different container. The optical tweezers can be used to custom build nanotube network structures. The work was supported in part by the Office of Naval Research.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov
http://www.nist.gov/public_affairs/images/Polymer_Nanotubes_Animation.htm

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>