Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Stable polymer nanotubes may have a biotech future


This sequence of images taken at NIST shows the creation of a nanotube as a highly focused infrared laser tugs on a polymer membrane that has been colored with a fluorescent dye. The white scale bar indicates 10 micrometers.

Scientists at the National Institute of Standards and Technology (NIST) have created polymer nanotubes that are unusually long (about 1 centimeter) as well as stable enough to maintain their shape indefinitely. Described in a new paper in Proceedings of the National Academy of Sciences,* the NIST nanotubes may have biotechnology applications as channels for tiny volumes of chemicals in nanofluidic reactor devices, for example, or as the "world’s smallest hypodermic needles" for injecting molecules one at a time.

Carbon nanotubes are of keen interest in nanotechnology research, especially for making ultrastrong fibers and other structures. Nanotubes made from other materials are used for transport in biochemical applications, but are typically fragile and usually collapse within a few hours. The NIST team developed processes for extending the shelf life of polymer nanotubes--considered essential for commercial applications--and forming sturdy nanotube network structures.

First the researchers made tiny, fluid-filled spherical containers with bi-layer membranes consisting of polymers with one end that likes water and one end that does not. (These fluid-filled containers are a spin-off of liposomes, artificial cells with fatty membranes used in cosmetics and for drug delivery.) The researchers made the membranes stretchy by adding a soap-like fluid to change the polymer membranes’ mechanical properties. Then they used "optical tweezers" (highly focused infrared lasers) or tiny droppers called micropipettes to pull on the elastic membranes to form long, double-walled tubes that are less than 100 nanometers in diameter. (View a movie of this process at:

A chemical was added to break bonds between atoms in one section of the polymers and induce new bonds to form between the two different sections, forming a rigid "cross-linked" membrane. The nanotubes are then snipped free from the parent cell with an "optical scalpel" (highly focused ultraviolet laser pulse). The nanotubes maintain their shape even after several weeks of storage, and can be removed from the liquid solution and placed on a dry surface or in a different container. The optical tweezers can be used to custom build nanotube network structures. The work was supported in part by the Office of Naval Research.

Laura Ost | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>