Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mutation in brain cells of descendants of Abraham Lincoln suggest he suffered from movement disorder

03.02.2006


Researchers at Johns Hopkins and the University of Minnesota have discovered a gene mutation in the descendants of Abraham Lincoln’s grandparents that suggests the Civil War president himself might have also suffered from a disease that destroys nerve cells in the cerebellum-- the part of the brain that controls movement. A report on this discovery will appear in the February print issue of Nature Genetics.



The joint finding of the SCA5 mutation comes over a decade after initial speculation that Lincoln might have suffered from Marfan disease. People with this inherited disorder are often tall and thin and can commonly have slender, tapering fingers. The identification of the Marfan gene at Hopkins (Nature 352, 279-81 [1991]) sparked debate concerning testing of President Lincoln’s DNA to determine whether his tall stature could have been caused by that disease.

The present discovery in Lincoln’s descendants of the gene that causes a movement disorder called spinocerebellar ataxia type 5 (SCA5), however, appears to offer much stronger evidence that the past president himself might have had SCA5, according to Jeffrey D. Rothstein, M.D., Ph.D., a professor of neurology and neuroscience and vice chairman for research in the Department of Neurology at The Johns Hopkins University School of Medicine. SCAs are neurodegenerative disorders that cause loss of coordination of limbs and eye movements, slurred speech and swallowing difficulties.


"Determining President Lincoln’s status relative to SCA5 would be of historical interest and would increase public awareness of ataxia and neurodegenerative disease," Rothstein said. The finding also has wider implications because similar mutations might also be associated with other neurodegenerative diseases, the Hopkins researcher said.

The researchers discovered that SCA5 is caused by a mutation of the ¥â-III spectrin gene SPTBN2, which disrupts the ability of certain nerves in the cerebellum to respond normally to incoming chemical signals. Eventually, these nerves -- called Purkinje cells -- degenerate, and the person loses fine control of the leg and arm muscles. This would explain historical descriptions of Lincoln’s uneven gait -- an early sign of ataxia -- according to the researchers. Ataxia is an inability to coordinate muscle activity in the arms and legs.

"The discovery by the team of the SCA5 mutations in 90 of 299 descendants of Lincoln could enable us to prove whether Lincoln himself carried the mutation by studying genetic material obtained from artifacts containing his DNA," said Rothstein, a co-author of the Nature Genetics paper.

The researchers found the mutation in all 90 affected individuals (ages 7 to 80 at time of exam) and in 35 descendants of Lincoln who had not yet started to show symptoms of SCA5 (ages 13 to 67 at time of exam), he said. The team also found two other types of mutations in ¥â-III spectrin 2 in a French and German family, respectively. The mutations found in the American, French and German families each affected a different part of the SPTBN2 gene, and thus knocked out a different part of the ¥â-III spectrin protein.

The mutation of the SPTBN2 gene disrupts the normal shape of ¥â-III spectrin, a protein that is key to the proper functioning of Purkinje cells, according to Rothstein, who cloned the protein in 2001 and first described its role in the brain. Specifically, ¥â-III spectrin helps to anchor another protein, called "glutamate transporter EAAT4," into the membrane of the Purkinje cell.

In the current study, the investigators showed in isolated cells that EAAT4 tends to migrate rapidly through the membrane of Purkinje cells. This movement disrupts the ability of the nerve-signaling chemical glutamate to bind with EAAT4, Rothstein said. "The loss of the ability of ¥â-III spectrin to anchor EAAT4 in place so it can respond to glutamate could lead to signaling abnormalities over time," said Rothstein. "And over time, that could cause Purkinje cell death and lead to the symptoms of SCA5."

A further implication of these findings is that SCA5 mutations could affect the complex movement of proteins in other nerve cells, the researchers said. Specifically, the spectrin’s interaction with a molecular "motor" that shuttles proteins through the cell suggests that mutated forms of this protein would disrupt this critical function.

The motor, which transfers proteins along cellular highways called microtubules, as well as glutamate transporters are implicated in a wide range of processes that are key to proper functioning of nerves, Rothstein noted. Disruption of the motor appears to occur in several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), he added. ALS is a fatal disease involving the cells in the brain and spinal cord that control muscles. Motor disruption also occurs in Huntington’s disease (HD), a genetic disorder that causes degeneration of brain cells in certain areas of the brain, resulting in uncontrolled movements, loss of intellectual abilities and emotional disturbance. In addition, disruption of protein transport through the long arms of nerves called axons occurs in Alzheimer’s disease, he added.

"The results of our work and that of other researchers suggest that even though different ¥â-III spectrin mutations disrupt different cellular processes, all of these different disruptions eventually cause the death of a particular brain cell," he said. "So further studies of SCA5 will likely provide insight into molecular mechanisms common to SCA5 and other neurodegenerative diseases. In recent years we have discovered drugs that can modulate the glutamate transporter and its gene, and that research could someday be useful for treating patients with spinocerebellar ataxia."

Eric Vohr | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>