Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of new gene for rare nerve disease may help doctors understand more common illnesses

01.02.2006


Saint Louis University neurologist to present findings, now available on-line



A multi-national research team that includes a Saint Louis University neurologist has discovered a gene mutation that causes a rare form of Charcot-Marie-Tooth disease, an inherited progressive nerve disorder. The findings are published in an advance online issue of Nature Genetics.

Researchers have identified some 50 people from three families who live in St. Louis, Wisconsin, Belgium and Bulgaria and have this form of Charcot-Marie Tooth (CMT) disease, says Florian Thomas, M.D., Ph.D., professor of neurology, molecular virology and molecular microbiology and immunology at Saint Louis University School of Medicine, and associate chief of staff and director of the St. Louis VA Medical Center Spinal Cord Injury/Dysfunction Service.


"The discovery of every new gene advances our knowledge of the function of the organ system for which it is relevant and in which it is expressed," Thomas says. "A gene identified in a specific and rare hereditary disease allows for a better understanding of all similar hereditary diseases.

"Not only that, it also allows for a better understanding of how nerves function in general and in any acquired neuropathy. So finding a gene in a family with CMT can help us understand how neuropathy develops in its most common form, for instance, in this country, that seen in people with diabetes."

CMT is the most common inherited neurological disorder, affecting one in 2,500 people and involving the peripheral nerves, which are the structures that connect the brain and spinal cord to our muscles, skin and internal organs.

Half of those who have CMT have one type of the illness due to a mutation in one particular gene, and the other half have one of many other types of the disease. The form of CMT shared by the three families researchers have studied is known as DI-CMT C. While CMT is rare, neuropathies in general are very common, affecting some 10 million people in this country.

"Finding the gene for this disease leads to new diagnostic possibilities for CMT sufferers," Thomas says.

While three families may not seem like very many, it’s enough for scientists to consider offering a commercial test to detect the genetic abnormality to diagnose the type of CMT, Thomas says.

"All of these diseases start out as being found in very few families. But once tests can easily be done, you may find many patients who have the disease," he says.

Thomas, his co-researchers and their affiliated institutions have applied for an international patent for their finding.

"Part of the justification for our international patent application is that identification of the gene can lead to a commercial application -- a gene test."

Thomas, who sees many CMT patients at the St. Louis VA Affairs Medical Center and at Saint Louis University, will present the findings at the April meeting of the American Academy of Neurology in San Diego.

Nancy Solomon | EurekAlert!
Further information:
http://www.slu.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>