Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Anthrax Toxins Also Harmful To Fruit Flies

31.01.2006


Deadly and damaging toxins that allow anthrax to cause disease and death in mammals have similar toxic effects in fruit flies, according to a study conducted by biologists at the University of California, San Diego.


Photo shows effect of anthrax lethal factor toxin in dorsal cells of developing fruit fly larvae. Credit: Annabel Guichard, UCSD



Their findings, which appear this week in an early online edition of the journal Proceedings of the National Academy of Sciences, show that fruit flies can be used to study the link between the biochemical activities and physiological effects of anthrax toxins.

Learning how these toxins attack developing and adult tissues is important because it can help scientists understand how they function at the molecular level and may lead to new therapeutic strategies for neutralizing their effects in humans.


Annabel Guichard, a biologist at UCSD and lead author of the study, tracked the ways that two active anthrax toxins, known as lethal factor, or LF, and edema factor, EF, cause cellular damage and death in the fruit fly Drosophila melanogaster. These toxins are required for the anthrax bacterium Bacillus anthracis to evade the host immune system and cause disease.

Using a combination of biochemical, genetic and cell biological approaches, the biologists tested whether or not the anthrax toxins were active in living Drosophila and, if so, whether they acted in the same way as they do in humans. The biologists found that anthrax toxins do alter the same signaling pathways used for cell communication in fruit flies and humans.

“Drosophila is an excellent tool to understand the effect of a toxin on its host and to determine the molecular mechanism underlying its toxicity, because the fly system is already so well characterized,” Guichard said. “We knew how anthrax toxins acted on human cells, but this study is the first to show that these toxins are active in fruit flies, suggesting that this fast breeding laboratory animal could also be used to determine the function of a variety of bacterial and viral pathogenic factors.”

Anthrax bacterium secretes three toxins, including LF and EF, and is only known to infect mammals. Because fruit flies lack components required for toxin entry into cells, they cannot actually contract the anthrax disease. However, the study finds that fruit flies can be used to test the effects of a single virulence factor, such as the LF or EF toxins, on signaling pathways shared by flies and humans.

Guichard and her co-authors applied lethal factor toxin to fruit fly embryos and larvae and observed that a component of the expected signaling pathway was inactivated, disrupting the whole molecular system and leading to death. When applied in a more limited fashion, LF interfered with the formation of sutures in the epidermis, resulting in a hole or cleft in thoracic regions of embryos and adults. This developmental process disrupted by LF treatment is similar mechanistically to wound healing, which is mediated by the same signaling pathway in humans.

The EF toxin is also lethal when applied to fly larvae and can cause severe malformation in the wings of adult fruit flies—an effect that can also be understood as an interruption of another unrelated signaling process common to flies and humans.

“We asked the simple question of whether anthrax toxins affecting mammals could act on the fly counterparts of proteins affected in humans, and the answer is yes,” said Ethan Bier, a professor of biology at UCSD who was the senior author of the study. “What this means is that similar types of analyses might identify yet unknown proteins shared by flies and humans that can be acted on by anthrax toxins. More generally, this study suggests that flies can be used as a rapid whole organism system to determine the function of a variety of bacterial and viral pathogens of unknown function. One could then test hypotheses obtained from these studies with flies in mammalian organisms such as mice.”

The biologists also anticipate that toxins such as the anthrax lethal factor toxin that have multiple host target proteins may be used to simultaneously reduce or eliminate the activities of several related proteins that perform overlapping functions in other diseases or biological processes. Such experimental tools could accelerate progress in various areas of biomedical research.

Guichard first conceived this study in 2002, to apply her experience in molecular genetic studies to research that had medical application. At that time, after the spate of anthrax-laced letters in 2001, anthrax became a charged topic in the research community and the general public.

“Anthrax is still a hot subject because of its possible use as a weapon of bioterrorism and remains a health threat in third world countries,” Guichard said. “Anthrax infections can be cured by antibiotics when detected early. But after a certain point, the toxins released in the bloodstream can kill the patient even after antibiotic treatment. The more we understand about how the toxins function, the better we’ll be able to design effective co-operative or “adjunctive” therapies.”

Other contributors to this study were Michael Karin in the department of pharmacology at UCSD’s School of Medicine, Jin Mo Park, now at Harvard Medical School and Beatriz Cruz-Moreno at UCSD. The study was supported by grants from the National Institutes of Health.

Media Contact: Kim McDonald (858) 534-7572.

Comments: Annabel Guichard (858) 534-0442, or Ethan Bier (858) 534-8792.

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>