Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify major source of muscle repair cells

27.01.2006


Implications for treating Duchenne’s muscular dystrophy

In a surprising discovery with implications for treating muscular dystrophy, researchers at the University of Utah School of Medicine and other institutions have identified a major source of origin for two groups of adult cells that regulate muscle repair.
The researchers found that these muscle repair cells, satellite and side population (SP) cells, arise from somites--transient blocks of tissue in the embryo that give rise to muscle, vertebrae, and the inner layer of skin called the dermis.


The origin of satellite and side population (SP) cells has engendered considerable debate. Published in the Jan. 24 issue of the Proceedings of the National Academy of Sciences, the study shows that a significant number of satellite and SP cells arise from somites. The researchers also found that SP cells originating from somites are much better at forming muscle than SP cells not produced by somites.

"It turns out that an adult muscle cell’s capacity to repair damaged muscle is directly related to where it comes from, and this has implications for the potential use of SP cells in repairing muscle in muscular dystrophy patients," said the study’s senior author, Gabrielle Kardon, Ph.D., assistant professor at the University’s Eccles Institute of Human Genetics.

In adults, damaged or diseased muscle is repaired by populations of adult muscle progenitors, such as satellite and SP cells. Satellite cells are responsible for most muscle repair. However, SP cells, only recently identified, can give rise to satellite cells and also repair damaged muscle.

Some researchers have proposed that SP cells are derived from the bone marrow, while others have suggested that both satellite and SP cells are derived from the somites.

Kardon and colleagues tested whether satellite and SP cells originate from somites by labeling somite cells in developing chicks and mice and following whether the labeled cells ended up as satellite or SP cells.

In chicks, somite cells were labeled by injecting cells with a retrovirus that contains green fluorescent protein (GFP), or by replacing chick somite cells with quail cells.

In mice, somitic cells were genetically labeled. Daughter cells derived from cells expressing the Pax3 gene, a gene expressed in the somites, were labeled with GFP.

In all three experiments, somite cells labeled in chick or mouse embryos gave rise to labeled satellite and SP cells in the adult.

These experiments demonstrate that a significant portion of satellite or SP cells is derived from the somites. However, not all SP cells were derived from the somites, indicating that some may be derived from the bone marrow.

When the researchers went on to compare SP cells derived from somite to SP cells potentially derived from bone marrow, they found that the somite-derived SP cells were much better at making muscle.

Duchenne’s muscular dystrophy is caused when the dystrophin gene is defective. Medical researchers have been looking for ways to use SP and satellite cells to deliver healthy copies of dystrophin to the damaged muscle in Duchenne’s patients.

Potentially, satellite or SP cells with a healthy copy of dystrophin could be injected into the circulatory system to home to and repair dystrophic muscle.

While satellite cells are highly myogenic (effective in muscle repair) from inside the body, they are inefficient in forming muscle when injected into mice. SP cells have been shown to produce a small amount of muscle when injected into dystrophic mice and may be candidates for delivering dystrophin, according to Kardon.

Using SP cells derived from somites may further increase their efficiency in repairing diseased muscle. But a lot of work remains to be done.

"We need to find highly myogenic cells that can be delivered systemically, such as by injection, and that can both home to and repair all the muscles of the body," Kardon said.

Phil Sahm | EurekAlert!
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>