Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists discover ’gatekeeper’ protein in blood clotting

27.01.2006


New research from the University of North Carolina at Chapel Hill School of Medicine has identified a protein that may control blood clotting by keeping blood platelets from sticking together.



Uncontrolled interactions between blood platelets such as those that occur during heart attacks and strokes contribute to these leading causes of death nationwide.

The study, which appears in the Jan. 17 edition of the Journal of Cell Biology, indicates that CIB1 binds to and keeps the platelet adhesion receptor GPIIb/IIIa in an inactive state, thus blocking platelet-to-platelet interactions in the blood.


Dr. Weiping Yuan, an assistant professor in UNC’s department of pharmacology and the study’s lead author, said CIB1’s role was as a "gatekeeper" of GPIIb/IIIa activation. "Originally, I was a little surprised. We expected CIB1 itself to activate GPIIb/IIIa, but that is clearly not the case. CIB1 keeps GPIIb/IIIa turned off until it should be activated."

The UNC laboratory of Dr. Leslie V. Parise, professor of pharmacology and the new study’s senior author, discovered the protein CIB1 in 1997. It was found inside platelets as a protein that binds to GPIIb/IIIa.

Under normal conditions, GPIIb/IIIa, found on the surface of platelets, remains in a resting, inactive state that allows normal blood flow. However, during clotting, GPIIb/IIIa becomes active, binds platelets to one another and attaches them to the blood vessel wall, thus forming a clot.

GPIIb/IIIa also is the target of several anti-coagulation drug therapies used in the clinic today, but the study suggests that knowledge of how CIB1 functions may lead to new therapeutic approaches.

The report, which used platelet precursor cells, demonstrated that decreasing the amount of CIB1 in these cells makes GPIIb/IIIa more responsive, thus more likely to mediate blood clotting. Increasing the amount of CIB1 prevented GPIIb/IIIa activation.

"Our data suggest that CIB1 may be one of the body’s own natural anti-coagulants – as long as CIB1 is bound to GPIIb/IIIa, the platelet stays quiet. However, if a person doesn’t have enough CIB1 or their CIB1 isn’t functional, then their platelets may have the potential to be hyper-responsive and pathologically predisposed to clotting," Parise said. Additionally, the authors propose that CIB1 maintains the adhesion receptor in its inactive state by preventing the binding of another protein called talin to GPIIb/IIIa, which has been shown in other studies to be an adhesion receptor activator.

"CIB1 and talin compete for binding to the adhesion receptor; therefore, we think that as long as CIB1 is bound to the adhesion receptor, this prevents talin from binding and activating the receptor," said Dr. Tina Leisner, assistant professor of pharmacology and one of the study’s primary authors.

The group now plans further study of the molecular mechanisms of the CIB1/GPIIb/IIIa interaction, which could lead to the development of new therapies in the prevention of platelet activation.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>