Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists discover ’gatekeeper’ protein in blood clotting

27.01.2006


New research from the University of North Carolina at Chapel Hill School of Medicine has identified a protein that may control blood clotting by keeping blood platelets from sticking together.



Uncontrolled interactions between blood platelets such as those that occur during heart attacks and strokes contribute to these leading causes of death nationwide.

The study, which appears in the Jan. 17 edition of the Journal of Cell Biology, indicates that CIB1 binds to and keeps the platelet adhesion receptor GPIIb/IIIa in an inactive state, thus blocking platelet-to-platelet interactions in the blood.


Dr. Weiping Yuan, an assistant professor in UNC’s department of pharmacology and the study’s lead author, said CIB1’s role was as a "gatekeeper" of GPIIb/IIIa activation. "Originally, I was a little surprised. We expected CIB1 itself to activate GPIIb/IIIa, but that is clearly not the case. CIB1 keeps GPIIb/IIIa turned off until it should be activated."

The UNC laboratory of Dr. Leslie V. Parise, professor of pharmacology and the new study’s senior author, discovered the protein CIB1 in 1997. It was found inside platelets as a protein that binds to GPIIb/IIIa.

Under normal conditions, GPIIb/IIIa, found on the surface of platelets, remains in a resting, inactive state that allows normal blood flow. However, during clotting, GPIIb/IIIa becomes active, binds platelets to one another and attaches them to the blood vessel wall, thus forming a clot.

GPIIb/IIIa also is the target of several anti-coagulation drug therapies used in the clinic today, but the study suggests that knowledge of how CIB1 functions may lead to new therapeutic approaches.

The report, which used platelet precursor cells, demonstrated that decreasing the amount of CIB1 in these cells makes GPIIb/IIIa more responsive, thus more likely to mediate blood clotting. Increasing the amount of CIB1 prevented GPIIb/IIIa activation.

"Our data suggest that CIB1 may be one of the body’s own natural anti-coagulants – as long as CIB1 is bound to GPIIb/IIIa, the platelet stays quiet. However, if a person doesn’t have enough CIB1 or their CIB1 isn’t functional, then their platelets may have the potential to be hyper-responsive and pathologically predisposed to clotting," Parise said. Additionally, the authors propose that CIB1 maintains the adhesion receptor in its inactive state by preventing the binding of another protein called talin to GPIIb/IIIa, which has been shown in other studies to be an adhesion receptor activator.

"CIB1 and talin compete for binding to the adhesion receptor; therefore, we think that as long as CIB1 is bound to the adhesion receptor, this prevents talin from binding and activating the receptor," said Dr. Tina Leisner, assistant professor of pharmacology and one of the study’s primary authors.

The group now plans further study of the molecular mechanisms of the CIB1/GPIIb/IIIa interaction, which could lead to the development of new therapies in the prevention of platelet activation.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>