Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists discover ’gatekeeper’ protein in blood clotting

27.01.2006


New research from the University of North Carolina at Chapel Hill School of Medicine has identified a protein that may control blood clotting by keeping blood platelets from sticking together.



Uncontrolled interactions between blood platelets such as those that occur during heart attacks and strokes contribute to these leading causes of death nationwide.

The study, which appears in the Jan. 17 edition of the Journal of Cell Biology, indicates that CIB1 binds to and keeps the platelet adhesion receptor GPIIb/IIIa in an inactive state, thus blocking platelet-to-platelet interactions in the blood.


Dr. Weiping Yuan, an assistant professor in UNC’s department of pharmacology and the study’s lead author, said CIB1’s role was as a "gatekeeper" of GPIIb/IIIa activation. "Originally, I was a little surprised. We expected CIB1 itself to activate GPIIb/IIIa, but that is clearly not the case. CIB1 keeps GPIIb/IIIa turned off until it should be activated."

The UNC laboratory of Dr. Leslie V. Parise, professor of pharmacology and the new study’s senior author, discovered the protein CIB1 in 1997. It was found inside platelets as a protein that binds to GPIIb/IIIa.

Under normal conditions, GPIIb/IIIa, found on the surface of platelets, remains in a resting, inactive state that allows normal blood flow. However, during clotting, GPIIb/IIIa becomes active, binds platelets to one another and attaches them to the blood vessel wall, thus forming a clot.

GPIIb/IIIa also is the target of several anti-coagulation drug therapies used in the clinic today, but the study suggests that knowledge of how CIB1 functions may lead to new therapeutic approaches.

The report, which used platelet precursor cells, demonstrated that decreasing the amount of CIB1 in these cells makes GPIIb/IIIa more responsive, thus more likely to mediate blood clotting. Increasing the amount of CIB1 prevented GPIIb/IIIa activation.

"Our data suggest that CIB1 may be one of the body’s own natural anti-coagulants – as long as CIB1 is bound to GPIIb/IIIa, the platelet stays quiet. However, if a person doesn’t have enough CIB1 or their CIB1 isn’t functional, then their platelets may have the potential to be hyper-responsive and pathologically predisposed to clotting," Parise said. Additionally, the authors propose that CIB1 maintains the adhesion receptor in its inactive state by preventing the binding of another protein called talin to GPIIb/IIIa, which has been shown in other studies to be an adhesion receptor activator.

"CIB1 and talin compete for binding to the adhesion receptor; therefore, we think that as long as CIB1 is bound to the adhesion receptor, this prevents talin from binding and activating the receptor," said Dr. Tina Leisner, assistant professor of pharmacology and one of the study’s primary authors.

The group now plans further study of the molecular mechanisms of the CIB1/GPIIb/IIIa interaction, which could lead to the development of new therapies in the prevention of platelet activation.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>