Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC scientists discover ’gatekeeper’ protein in blood clotting

27.01.2006


New research from the University of North Carolina at Chapel Hill School of Medicine has identified a protein that may control blood clotting by keeping blood platelets from sticking together.



Uncontrolled interactions between blood platelets such as those that occur during heart attacks and strokes contribute to these leading causes of death nationwide.

The study, which appears in the Jan. 17 edition of the Journal of Cell Biology, indicates that CIB1 binds to and keeps the platelet adhesion receptor GPIIb/IIIa in an inactive state, thus blocking platelet-to-platelet interactions in the blood.


Dr. Weiping Yuan, an assistant professor in UNC’s department of pharmacology and the study’s lead author, said CIB1’s role was as a "gatekeeper" of GPIIb/IIIa activation. "Originally, I was a little surprised. We expected CIB1 itself to activate GPIIb/IIIa, but that is clearly not the case. CIB1 keeps GPIIb/IIIa turned off until it should be activated."

The UNC laboratory of Dr. Leslie V. Parise, professor of pharmacology and the new study’s senior author, discovered the protein CIB1 in 1997. It was found inside platelets as a protein that binds to GPIIb/IIIa.

Under normal conditions, GPIIb/IIIa, found on the surface of platelets, remains in a resting, inactive state that allows normal blood flow. However, during clotting, GPIIb/IIIa becomes active, binds platelets to one another and attaches them to the blood vessel wall, thus forming a clot.

GPIIb/IIIa also is the target of several anti-coagulation drug therapies used in the clinic today, but the study suggests that knowledge of how CIB1 functions may lead to new therapeutic approaches.

The report, which used platelet precursor cells, demonstrated that decreasing the amount of CIB1 in these cells makes GPIIb/IIIa more responsive, thus more likely to mediate blood clotting. Increasing the amount of CIB1 prevented GPIIb/IIIa activation.

"Our data suggest that CIB1 may be one of the body’s own natural anti-coagulants – as long as CIB1 is bound to GPIIb/IIIa, the platelet stays quiet. However, if a person doesn’t have enough CIB1 or their CIB1 isn’t functional, then their platelets may have the potential to be hyper-responsive and pathologically predisposed to clotting," Parise said. Additionally, the authors propose that CIB1 maintains the adhesion receptor in its inactive state by preventing the binding of another protein called talin to GPIIb/IIIa, which has been shown in other studies to be an adhesion receptor activator.

"CIB1 and talin compete for binding to the adhesion receptor; therefore, we think that as long as CIB1 is bound to the adhesion receptor, this prevents talin from binding and activating the receptor," said Dr. Tina Leisner, assistant professor of pharmacology and one of the study’s primary authors.

The group now plans further study of the molecular mechanisms of the CIB1/GPIIb/IIIa interaction, which could lead to the development of new therapies in the prevention of platelet activation.

L.H. Lang | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>