Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BRCA1 gene found to inhibit two sex hormones, not just one

27.01.2006


Could help explain why women who have mutations in their BRCA1 gene are susceptible to ’hormone-dependent’ cancers including breast, endometrial and cervical cancers



It’s been known that the breast cancer susceptibility gene BRCA1 regulates use of estrogen in breast and other cells, but now researchers at Georgetown University Medical Center have discovered that it also controls activity of a second sex steroid hormone, progesterone.

The findings, conducted in cell culture and in mice and reported by the researchers in the January issue of Molecular Endocrinology, could help explain why women who have mutations in their BRCA1 gene are susceptible to a number of different "hormone-dependent" cancers, including those of the breast, endometriun and cervix.


It also has implications for ordinary cancers that arise because a normal BRCA1 gene is under-expressed, said the study’s principal investigator, Eliot Rosen, MD, PhD, professor of oncology, cell biology, and radiation medicine at the Lombardi Comprehensive Cancer Center.

For example, he says that up to 40 percent of breast tumors are deficient in BRCA1, "and it may be that some patients could benefit not only from an anti-estrogen therapy, like tamoxifen, but also from an anti-progesterone agent.

"We don’t know if that is true yet, of course, but it is certainly worth investigating, given our findings," Rosen said.

The BRCA1 gene and a second gene, BRCA2, were discovered to be breast cancer susceptibility genes in 1994 and 1995, respectively. Women who inherit faulty copies of one of these genes have up to an 80 percent increased risk of developing breast cancer by age 70, and are also more likely to be diagnosed with ovarian cancer.

Rosen and his research team undertook the study to understand why loss of the BRCA1 gene results in cancers in tissues that are dependent on hormones. They focused on the progesterone hormone, in part, because of the observation that women who use hormone replacement therapy that includes both estrogen and progestin (a synthetic form of progesterone) are at greater risk of developing breast cancer than women who use only estrogen replacement.

The use of progesterone in the breast is tightly regulated and is primarily activated when growth in cells is needed, such as during the female menstrual cycle and to support a pregnancy. A cell’s use of progesterone and other such hormones is controlled by specific receptor proteins, located inside cells, which bind on to the hormone. This process activates the receptor, which then migrates to the cell nucleus to stimulate gene expression.

To find out what role BRCA1 played in progesterone receptor signaling, the Lombardi research team conducted a series of experiments. In one set of cell culture studies in the laboratory, they used breast cancer cells that were responsive to progesterone, and then genetically manipulated them to either over or under-express the BRCA1 gene in order to assess the gene’s effect on progesterone receptor signaling.

They also used mice in which the BRCA1 gene was partially deleted, but only in breast tissue. The animals were treated with estrogen, or progesterone, or both, and response of the mammary gland was compared with that of normal mice.

In this way, the researchers concluded that BRCA1 interacts physically with the progesterone receptor, and stops it from activating other genes. It does this even in the absence of the progesterone hormone, and, thus, acts as a strong check on errant growth.

"But in mice deficient in BRCA1, we found that estrogen plus progesterone has a particularly large effect in stimulating the growth of mammary epithelial cells − an effect much greater than the effects of either hormone used alone," Rosen said.

Liz McDonald | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>