Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Diabetes complications rooted in faulty cell repair


UF researchers restore vitality to cells in lab experiments

University of Florida researchers say primitive cells that act like molecular maintenance men - traveling throughout the body to repair damaged blood vessels - become too rigid to move in patients with diabetes, fueling the disease’s vascular complications. But they have found a way to restore the cells’ flexibility, at least in the laboratory, according to findings published in the January issue of the journal Diabetes.

Having diabetes markedly raises the risk of developing a host of other ailments, from heart disease to stroke, blindness and kidney failure. Many arise after blood vessels suffer damage, spurring the accumulation of fatty deposits in the arteries or the wild, blinding growth of capillaries in the eye.

"We’re interested in what happens in the body at the molecular level to cause these life-threatening problems," said Mark S. Segal, Ph.D., an assistant professor of nephrology, hypertension and transplantation at UF’s College of Medicine. "Our work is focused on understanding why diabetic patients are at increased risk for these other diseases."

The problem is rooted in the body’s response to vascular injury. The bone marrow churns out cells crucial to repairing the damaged lining of blood vessels. But sometimes they fail to report for duty.

"Part of the defect we think is occurring in diabetic patients is these cells do not carry out appropriate repair, and therefore these patients are at higher risk for cardiovascular disease and other complications," Segal said.

The inability of the cells to repair the peripheral vasculature, the large vessels of the body, is similar to their inability to repair the small vessels within the eye, he added.

"In the vasculature it leads to atherosclerosis, and within the eye it leads to diabetic retinopathy," he said. "So the link is we have one defect in these cells that can lead to both of these problems."

UF researchers isolated these repair cells from blood samples drawn from patients with diabetes and chronic kidney disease and studied them in the laboratory. The cells were unable to move about normally. But when nitric oxide gas was added, Segal said, the cells lost their rigidity, becoming suppler, and their ability to move dramatically improved.

In the body, nitric oxide occurs naturally. It helps the repair cells move out of the bone marrow where they are made, and it opens blood vessels and improves the uptake of oxygen. Patients with diabetes, however, commonly have low levels of nitric oxide.

"We went on to show that actually what’s happening is nitric oxide is affecting the skeleton, or scaffold of the cell, and by adding nitric oxide we’re able to rearrange the scaffold," Segal said. "When we rearrange the scaffold, the cells are able to migrate. The benefit of this is that when cells have improved movement they are able to repair the endothelium (the lining of the blood vessels) better and perhaps prevent atherosclerosis."

UF scientists suspect that in the cells taken from diabetic patients, nitric oxide interacts with a protein that steers the protein to the cell surface instead of inserting it into the cell as it would in healthy people. That causes the cell to stiffen.

The finding raises the possibility that nitric oxide could someday be used to keep the cells mobile, enabling them to travel to distant sites when needed, Segal said.

"The importance of this is related to other work that has shown that many drugs being used on the market today actually affect nitric oxide levels within these cells," Segal said. "So someday there may be two ways to help people whose cells may not function as well as they should. One is through certain medications - there may be a way we could actually give medications that would affect the nitric oxide levels within these cells and enhance their migratory ability. The other is through certain instances where we might actually collect these cells, treat them with nitric oxide outside the body and give them back to patients, to help improve the cells’ migration ability."

In the future, for example, patients with diabetes and atherosclerosis who require angioplasty might receive injections of their own repair cells. The cells would be removed, incubated with nitric oxide to improve their function and then returned. They would theoretically help blood vessels heal more quickly, and perhaps keep new fatty deposits from forming, Segal speculated.

The research grew out of previous work at UF in collaboration with UF biochemist Daniel Purich, Ph.D., and pharmacologist Maria Grant, M.D. UF materials scientist Roger Tran-Son-Tay, Ph.D., among others, also participated in the current study.

"The work of Segal and colleagues is groundbreaking and provides important insights into the underlying mechanism of blood vessel damage in diabetes, which is the hallmark lesion for complications affecting the kidneys, eyes and nerves in patients with diabetes," said Anupam Agarwal, M.D., director of the Nephrology Research and Training Center at the University of Alabama at Birmingham.

Melanie Fridl Ross | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>